Patents by Inventor Amarpreet S. Sawhney

Amarpreet S. Sawhney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040086493
    Abstract: Water soluble macromers are modified by addition of free radical polymerizable groups, such as those containing a carbon-carbon double or triple bond, which can be polymerized under mild conditions to encapsulate tissues, cells, or biologically active materials. The polymeric materials are particularly useful as tissue adhesives, coatings for tissue lumens including blood vessels, coatings for cells such as islets of Langerhans, coatings, plugs, supports or substrates for contact with biological materials such as the body, and as drug delivery devices for biologically active molecules.
    Type: Application
    Filed: June 25, 2003
    Publication date: May 6, 2004
    Applicant: Board of Regents, The University of Texas System
    Inventors: Jeffrey A. Hubbell, Chandrashekhar P. Pathak, Amarpreet S. Sawhney, Neil P. Desai, Jennifer L. Hill, Syed F.A. Hossainy
  • Publication number: 20040072961
    Abstract: Gel-forming macromers including at least four polymeric blocks, at least two of which are hydrophobic and at least one of which is hydrophilic, and including a crosslinkable group are provided. The macromers can be covalently crosslinked to form a gel on a tissue surface in vivo. The gels formed from the macromers have a combination of properties including thermosensitivity and lipophilicity, and are useful in a variety of medical applications including drug delivery and tissue coating.
    Type: Application
    Filed: August 27, 2003
    Publication date: April 15, 2004
    Applicant: Focal, Inc
    Inventors: Chandrashekhar P. Pathak, Shikha P. Barman, C. Michael Philbrook, Amarpreet S. Sawhney, Arthur J. Coury, Luis Z. Avila, Mark T. Kieras
  • Patent number: 6703047
    Abstract: Compositions and methods are provided for forming tissue-adherent hydrogels using substantially dry precursors. The dehydrated precursors are premixed prior to in situ therapy and utilize naturally-occurring body fluids as an aqueous environment that initiates transformation, which causes dissolution and nearly simultaneous crosslinking of the precursors, thus forming an insoluble hydrogel implant. The dehydrated precursor-based hydrogels may be used as sealants for fluid leaks from tissue, as adherent drug delivery depots, as means for augmenting and/or supporting tissue, and as means for serving a variety of other useful medical and surgical purposes.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: March 9, 2004
    Assignee: Incept LLC
    Inventors: Amarpreet S. Sawhney, Peter G. Edelman
  • Publication number: 20040033264
    Abstract: Compositions and methods are provided to control the release of relatively low molecular weight therapeutic species through hydrogels by first dispersing or dissolving such therapeutic species within relatively hydrophobic rate modifying agents to form a mixture. The mixture is formed into microparticles that are dispersed within bioabsorbable hydrogels, so as to release the water soluble therapeutic agents in a controlled fashion. Methods of using the compositions of the present invention in therapeutic systems are also provided.
    Type: Application
    Filed: August 12, 2003
    Publication date: February 19, 2004
    Applicant: Incept LLC
    Inventor: Amarpreet S. Sawhney
  • Patent number: 6689148
    Abstract: Methods and apparatus of forming hydrogel systems in situ are provided using a delivery system configured to deliver two or more fluent prepolymer solutions without premature crosslinking. The delivery system comprises separate first and second lumens coupling first and second inlet ports and first and second outlet ports, respectively, and may include a balloon, flexible distal region, mixing chamber or steerable distal end. Multi-component hydrogel systems suitable for use with the inventive methods and apparatus are also described.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: February 10, 2004
    Assignee: Incept LLC
    Inventors: Amarpreet S. Sawhney, John Spiridigliozzi
  • Publication number: 20040023842
    Abstract: Biocompatible crosslinked polymers, and methods for their preparation and use, are disclosed in which the biocompatible crosslinked polymers are formed from water soluble precursors having electrophilic and nucleophilic groups capable of reacting and crosslinking in situ. Methods for making the resulting biocompatible crosslinked polymers biodegradable or not are provided, as are methods for controlling the rate of degradation. The crosslinking reactions may be carried out in situ on organs or tissues or outside the body. Applications for such biocompatible crosslinked polymers and their precursors include controlled delivery of drugs, prevention of post-operative adhesions, coating of medical devices such as vascular grafts, wound dressings and surgical sealants.
    Type: Application
    Filed: February 24, 2003
    Publication date: February 5, 2004
    Applicant: Incept
    Inventors: Chandrashekhar P. Pathak, Amarpreet S. Sawhney, Peter G. Edelman
  • Publication number: 20040009205
    Abstract: Pharmaceutically acceptable hydrogel polymers of natural, recombinant or synthetic origin, or hybrids thereof, are introduced in a dry, less hydrated, or substantially deswollen state and rehydrate in a physiological environment to undergo a volumetric expansion and to affect sealing, plugging, or augmentation of tissue, defects in tissue, or of organs. The hydrogel polymers may deliver therapeutic entities by controlled release at the site. Methods to form useful devices from such polymers, and to implant the devices are provided.
    Type: Application
    Filed: July 9, 2003
    Publication date: January 15, 2004
    Applicant: Incept LLC
    Inventor: Amarpreet S. Sawhney
  • Patent number: 6673093
    Abstract: Methods and apparatus of forming in situ tissue adherent barriers are provided using a sprayer capable of applying two or more viscous crosslinkable components to tissue. The sprayer comprises separate spray nozzles for each of two or more crosslinkable solutions, with each nozzle surrounded by an annular gas flow outlet. Crosslinkable solutions are stored in separate compartments and communicated under pressure to the spray nozzles. In the presence of gas flow through the annular gas flow outlets, the crosslinkable solutions are atomized and mixed in the gas flow to form a spray. Multi-component hydrogel systems suitable for use with the inventive methods and apparatus are also described.
    Type: Grant
    Filed: April 21, 2000
    Date of Patent: January 6, 2004
    Assignee: Incept LLC
    Inventor: Amarpreet S. Sawhney
  • Patent number: 6639014
    Abstract: Gel-forming macromers including at least four polymeric blocks, at least two of which are hydrophobic and at least one of which is hydrophilic, and including a crosslinkable group are provided. The macromers can be covalently crosslinked to form a gel on a tissue surface in vivo. The gels formed from the macromers have a combination of properties including thermosensitivity and lipophilicity, and are useful in a variety of medical applications including drug delivery and tissue coating.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: October 28, 2003
    Assignee: Focal, Inc.
    Inventors: Chandrashekhar P. Pathak, Shikha P. Barman, C. Michael Philbrook, Amarpreet S. Sawhney, Arthur J. Coury, Luis Z. Avila, Mark T. Kieras
  • Patent number: 6632446
    Abstract: Water soluble macromers are modified by addition of free radical polymerizable groups, such as those containing a carbon-carbon double or triple bond, which can be polymerized under mild conditions to encapsulate tissues, cells, or biologically active materials. The polymeric materials are particularly useful as tissue adhesives, coatings for tissue lumens including blood vessels, coatings for cells such as islets of Langerhans, and coatings, plugs, supports or substrates for contact with biological materials such as the body, and as drug delivery devices for biologically active molecules.
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: October 14, 2003
    Assignee: The Board of Regents, University of Texas System
    Inventors: Jeffrey A. Hubbell, Chandrashekhar P. Pathak, Amarpreet S. Sawhney, Neil P. Desai, Jennifer L. Hill, Syed F. A. Hossainy
  • Patent number: 6632457
    Abstract: Compositions and methods are provided to control the release of relatively low molecular weight therapeutic species through hydrogels by first dispersing or dissolving such therapeutic species within relatively hydrophobic rate modifying agents to form a mixture. The mixture is formed into microparticles that are dispersed within bioabsorbable hydrogels, so as to release the water soluble therapeutic agents in a controlled fashion. Methods of using the compositions of the present invention in therapeutic systems are also provided.
    Type: Grant
    Filed: August 14, 1998
    Date of Patent: October 14, 2003
    Assignee: Incept LLC
    Inventor: Amarpreet S. Sawhney
  • Publication number: 20030162841
    Abstract: Biocompatible crosslinked-polymers, and methods for their preparation and use, are disclosed in which the biocompatible crosslinked polymers are formed from water soluble precursors having electrophilic and nucleophilic groups capable of reacting and crosslinking in situ. Methods for making the resulting biocompatible crosslinked polymers biodegradable or not are provided, as are methods for controlling the rate of degradation. The crosslinking reactions may be carried out in situ on organs or tissues or outside the body. Applications for such biocompatible crosslinked polymers and their precursors include controlled delivery of drugs, prevention of post-operative adhesions, coating of medical devices such as vascular grafts, wound dressings and surgical sealants.
    Type: Application
    Filed: February 25, 2003
    Publication date: August 28, 2003
    Applicant: Incept
    Inventors: Chandrashekhar P. Pathak, Amarpreet S. Sawhney, Peter G. Edelman
  • Patent number: 6610033
    Abstract: The present invention provides apparatus and methods for making and using a medicinal polymer formed from two components. The apparatus includes a double syringe holder housing first and second syringes that is adapted to be coupled with a predetermined orientation to a double vial holder housing first and second vials. The double syringe holder and double vial holder have mating key features that prevent the first syringe from being coupled to the second vial and the second syringe from being coupled to the first vial. The apparatus also includes a delivery device having first and second inlet ports and a key feature that prevents the first syringe from being coupled to the second inlet port and the second syringe from being coupled to the first inlet port.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: August 26, 2003
    Assignee: Incept, LLC
    Inventors: David A. Melanson, Michelle D. Lyman, Peter G. Edelman, Amarpreet S. Sawhney
  • Patent number: 6605294
    Abstract: Pharmaceutically acceptable hydrogel polymers of natural, recombinant or synthetic origin, or hybrids thereof, are introduced in a dry, less hydrated, or substantially deswollen state and rehydrate in a physiological environment to undergo a volumetric expansion and to affect sealing, plugging, or augmentation of tissue, defects in tissue, or of organs. The hydrogel polymers may deliver therapeutic entities by controlled release at the site. Methods to form useful devices from such polymers, and to implant the devices are provided.
    Type: Grant
    Filed: August 14, 1998
    Date of Patent: August 12, 2003
    Assignee: Incept LLC
    Inventor: Amarpreet S. Sawhney
  • Patent number: 6602975
    Abstract: Hydrogels of polymerized and crosslinked macromers comprising hydrophilic oligomers having biodegradable monomeric or oligomeric extensions, which biodegradable extensions are terminated on free ends with end cap monomers or oligomers capable of polymerization and cross linking are described. The hydrophilic core itself may be degradable, thus combining the core and extension functions. Macromers are polymerized using free radical initiators under the influence of long wavelength ultraviolet light, visible light excitation or thermal energy. Biodegradation occurs at the linkages within the extension oligomers and results in fragments which are non-toxic and easily removed from the body. Preferred applications for the hydrogels include prevention of adhesion formation after surgical procedures, controlled release of drugs and other bioactive species, temporary protection or separation of tissue surfaces, adhering of sealing tissues together, and preventing the attachment of cells to tissue surfaces.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: August 5, 2003
    Assignee: Board of Regents, The University of Texas System
    Inventors: Jeffrey A. Hubbell, Chandrashekhar P. Pathak, Amarpreet S. Sawhney, Neil P. Desai, Jennifer L. Hill
  • Publication number: 20030108511
    Abstract: Biocompatible crosslinked polymers, and methods for their preparation and use with minimally invasive surgery applicators are disclosed. The disclosure includes compositions and methods for in situ formation of hydrogels using minimally invasive surgical techniques.
    Type: Application
    Filed: December 13, 2002
    Publication date: June 12, 2003
    Inventor: Amarpreet S. Sawhney
  • Publication number: 20030104032
    Abstract: An improved barrier or drug delivery system which is highly adherent to the surface to which it is applied is disclosed, along with methods for making the barrier. In the preferred embodiment, the system is compliant, in that it is capable of conforming to the three dimensional structure of a tissue surface as the tissue bends and deforms during healing processes. The barrier or drug delivery systems is formed as a polymeric coating on tissue surfaces by applied a polymerizable monomer to the surface, and then polymerizing the monomer. The polymerized compliant coating preferably is biodegradable and biocompatible, and can be designed with selected properties of compliancy and elasticity for different surgical and therapeutic applications.
    Type: Application
    Filed: January 7, 2003
    Publication date: June 5, 2003
    Applicant: Focal, Inc.
    Inventors: Amarpreet S. Sawhney, Michelle D. Lyman, Peter K. Jarrett, Ronald S. Rudowsky
  • Patent number: 6566406
    Abstract: Biocompatible crosslinked polymers, and methods for their preparation and use, are disclosed in which the biocompatible crosslinked polymers are formed from water soluble precursors having electrophilic and nucleophilic groups capable of reacting and crosslinking in situ. Methods for making the resulting biocompatible crosslinked polymers biodegradable or not are provided, as are methods for controlling the rate of degradation. The crosslinking reactions may be carried out in situ on organs or tissues or outside the body. Applications for such biocompatible crosslinked polymers and their precursors include controlled delivery of drugs, prevention of post-operative adhesions, coating of medical devices such as vascular grafts, wound dressings and surgical sealants.
    Type: Grant
    Filed: December 3, 1999
    Date of Patent: May 20, 2003
    Assignee: Incept, LLC
    Inventors: Chandrashekhar P. Pathak, Amarpreet S. Sawhney, Peter G. Edelman
  • Publication number: 20030087985
    Abstract: This invention provides novel methods for the formation of biocompatible membranes around biological materials using photopolymerization of water soluble molecules. The membranes can be used as a covering to encapsulate biological materials or biomedical devices, as a “glue” to cause more than one biological substance to adhere together, or as carriers for biologically active species.
    Type: Application
    Filed: July 19, 2001
    Publication date: May 8, 2003
    Inventors: Jeffrey A. Hubbell, Chandrashekhar P. Pathak, Amarpreet S. Sawhney, Neil P. Desai, Syed F.A. Hossainy, Jennifer L. Hill-West
  • Publication number: 20030077242
    Abstract: Methods are provided for forming hydrogel barriers in situ that adhere to tissue and prevent the formation of post-surgical adhesions or deliver drugs or other therapeutic agents to a body cavity. The hydrogels are crosslinked, resorb or degrade over a period of time, and may be formed by free radical polymerization initiated by a redox system or thermal initiation, or electrophilic-neutrophilic mechanism, wherein two components of an initiating system are simultaneously or sequentially poured into a body cavity to obtain widespread dispersal and coating of all or most visceral organs within that cavity prior to gelation and polymerization of the regional barrier. The hydrogel materials are selected to have a low stress at break in tension or torsion, and so as to have a close to equilibrium hydration level when formed.
    Type: Application
    Filed: October 8, 2002
    Publication date: April 24, 2003
    Applicant: Incept LLC
    Inventor: Amarpreet S. Sawhney