Patents by Inventor Ambreen Nisar

Ambreen Nisar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11866569
    Abstract: Foams and methods of fabricating and using the same are provided. The foams can be free-standing and rigid and can be used as, for example, nanofiller networks. The shape and size of the foam pore interconnected network can be tailorable/tailored. The foams can be, for example, transition metal dichalcogenide (TMD) foams with a layered structure (e.g., tungsten sulfide (WS2) foams). A freeze-drying-based method can be used to fabricate bulk porous foam, which can be used for, e.g., polymer nanocomposites. A vacuum-assisted infiltration procedure can be used to fabricate a foam-polymer nanocomposite.
    Type: Grant
    Filed: May 30, 2023
    Date of Patent: January 9, 2024
    Assignee: THE FLORIDA INTERNATIONAL UNIVERSITY BOARD OF TRUSTEES
    Inventors: Arvind Agarwal, Kazue Orikasa, Ambreen Nisar, Tony Thomas, Preyojon Dey
  • Publication number: 20230406776
    Abstract: High-entropy ultra-high temperature ceramics (HE-UHTC) coatings deposited on substrates, as well methods for depositing the HE-UHTC coatings on the substrates, are provided. An HE-UHTC electrode can be fabricated via spark plasma sintering (SPS) and then a thin coating of the HE-UHTC can be deposited in a precision-controlled manner on a substrate via an electro-spark deposition process.
    Type: Application
    Filed: April 5, 2023
    Publication date: December 21, 2023
    Applicant: The Florida International University Board of Trustees
    Inventors: Ambreen Nisar, Arvind Agarwal, Cheng Zhang
  • Patent number: 11840486
    Abstract: High-entropy ultra-high temperature ceramics (HE-UHTC) coatings deposited on substrates, as well methods for depositing the HE-UHTC coatings on the substrates, are provided. An HE-UHTC electrode can be fabricated via spark plasma sintering (SPS) and then a thin coating of the HE-UHTC can be deposited in a precision-controlled manner on a substrate via an electro-spark deposition process.
    Type: Grant
    Filed: April 5, 2023
    Date of Patent: December 12, 2023
    Assignee: THE FLORIDA INTERNATIONAL UNIVERSITY BOARD OF TRUSTEES
    Inventors: Ambreen Nisar, Arvind Agarwal, Cheng Zhang
  • Patent number: 11807581
    Abstract: Ultra-high temperature carbide (UHTC) foams and methods of fabricating and using the same are provided. The UHTC foams are produced in a three-step process, including UHTC slurry preparation, freeze-drying, and spark plasma sintering (SPS). The fabrication methods allow for the production of any kind of single- or multi-component UHTC foam, while also providing flexibility in the shape and size of the UHTC foams to produce near-net-shape components.
    Type: Grant
    Filed: September 16, 2022
    Date of Patent: November 7, 2023
    Assignee: THE FLORIDA INTERNATIONAL UNIVERSITY BOARD OF TRUSTEES
    Inventors: Arvind Agarwal, Ambreen Nisar, Tony Thomas, Kazue Orikasa, Benjamin Peter Boesl
  • Patent number: 11802088
    Abstract: High-entropy ultra-high temperature ceramics (HE-UHTC) coatings deposited on substrates, as well methods for depositing the HE-UHTC coatings on the substrates, are provided. An HE-UHTC electrode can be fabricated via spark plasma sintering (SPS) and then a thin coating of the HE-UHTC can be deposited in a precision-controlled manner on a substrate via an electro-spark deposition process.
    Type: Grant
    Filed: June 16, 2022
    Date of Patent: October 31, 2023
    Assignee: THE FLORIDA INTERNATIONAL UNIVERSITY BOARD OF TRUSTEES
    Inventors: Ambreen Nisar, Arvind Agarwal, Cheng Zhang
  • Patent number: 11752693
    Abstract: The subject invention provides compositions, systems, and methods for additive manufacturing (AM), including three dimensional printing (3DP) using Digital Light Processing (DLP), of Lunar regolith and Lunar regolith simulants including Greenland Anorthosite Lunar Regolith (GALR) with a photocurable thermosetting polymer. Certain embodiments provide a high solid content of regolith, for example, about 60 wt. % GALR; together with a lower content of additives, for example, about 40 wt. % of a photocurable thermosetting polymer. Embodiments of the provided recipe and processing method can produce parts with low shrinkage, high strength, and favorable thermal properties. Parts have been produced with less than about 6% shrinkage in multiple directions of measurement.
    Type: Grant
    Filed: April 5, 2023
    Date of Patent: September 12, 2023
    Assignee: THE FLORIDA INTERNATIONAL UNIVERSITY BOARD OF TRUSTEES
    Inventors: Arvind Agarwal, Ambreen Nisar, Tony Thomas, Brandon A. Aguiar
  • Publication number: 20230183139
    Abstract: Ultra-high temperature carbide (UHTC) foams and methods of fabricating and using the same are provided. The UHTC foams are produced in a three-step process, including UHTC slurry preparation, freeze-drying, and spark plasma sintering (SPS). The fabrication methods allow for the production of any kind of single- or multi-component UHTC foam, while also providing flexibility in the shape and size of the UHTC foams to produce near-net-shape components.
    Type: Application
    Filed: September 16, 2022
    Publication date: June 15, 2023
    Applicant: The Florida International University Board of Trustees
    Inventors: Arvind Agarwal, Ambreen Nisar, Tony Thomas, Kazue Orikasa, Benjamin Peter Boesl
  • Patent number: 11643756
    Abstract: Hybrid carbon nanofiber (Cnf) products (e.g., mats, yarns, webs, etc.) and methods of fabricating the same are provided. The hybrid Cnf products are flexible and lightweight and have high thermal conductivity. An electrospinning process can be used to fabricate the hybrid Cnf products and can include preparation of an electrospinning solution, electrospinning, and carbonization (e.g., under a vacuum condition).
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: May 9, 2023
    Assignee: THE FLORIDA INTERNATIONAL UNIVERSITY BOARD OF TRUSTEES
    Inventors: Arvind Agarwal, Ambreen Nisar, Lihua Lou, Benjamin Peter Boesl
  • Patent number: 11472746
    Abstract: Ultra-high temperature carbide (UHTC) foams and methods of fabricating and using the same are provided. The UHTC foams are produced in a three-step process, including UHTC slurry preparation, freeze-drying, and spark plasma sintering (SPS). The fabrication methods allow for the production of any kind of single- or multi-component UHTC foam, while also providing flexibility in the shape and size of the UHTC foams to produce near-net-shape components.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: October 18, 2022
    Assignee: THE FLORIDA INTERNATIONAL UNIVERSITY BOARD OF TRUSTEES
    Inventors: Arvind Agarwal, Ambreen Nisar, Tony Thomas, Kazue Orikasa, Benjamin Peter Boesl