Patents by Inventor Amel Laref

Amel Laref has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10052302
    Abstract: The green synthesis of a reduced graphene oxide (rGO) silica (SiO2) nanocomposite using Nigella sativa seed extract includes mixing a quantity of carbon source in an acid solution while stirring to obtain a solution; adding a first oxidant gradually into the solution to oxidize the soot and obtain a first suspension; stirring the first suspension while maintaining a temperature of the suspension to about 35° C.; adding plant seeds extract to the first suspension while raising the temperature of the suspension to about 60° C.; adding a second oxidant to the suspension to form the reduced graphene oxide nanoparticles; isolating the reduced graphene oxide nanoparticles by centrifugation; suspending the reduced graphene oxide nanoparticles in water; adding a solution comprising tetraethyl orthosilicate (TEOS), concentrated aqueous ammonia solution and a plant seeds extract under ultrasonication; and increasing the temperature to about 90° C. to form reduced graphene oxide-silicon dioxide nanocomposite suspension.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: August 21, 2018
    Assignee: KING SAUD UNIVERSITY
    Inventors: Manal Ahmed Gasmelseed Awad, Awatif Ahmed Hendi, Khalid Mustafa Osman Ortashi, Amel Laref
  • Patent number: 9988276
    Abstract: The green synthesis of reduced graphene oxide nanoparticles using Nigella sativa seed extract comprises the steps of mixing a quantity of soot or other carbon source in an acid solution while stirring to obtain a solution; adding a first oxidant gradually into the solution to oxidize the soot and obtain a suspension; stirring the suspension while maintaining the temperature of the suspension at about 35° C.; adding Nigella sativa seed extract to the suspension while raising the temperature of the suspension to about 60° C.; adding hydrogen peroxide to the suspension; and isolating the reduced graphene oxide nanoparticles by centrifugation.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: June 5, 2018
    Assignee: KING SAUD UNIVERSITY
    Inventors: Manal Ahmed Gasmelseed Awad, Awatif Ahmed Hendi, Khalid Mustafa Osman Ortashi, Amel Laref
  • Patent number: 9975780
    Abstract: The green synthesis of reduced graphene oxide nanoparticles using Nigella sativa seed extract comprises the steps of mixing a quantity of soot or other carbon source in an acid solution while stirring to obtain a solution; adding a first oxidant gradually into the solution to oxidize the soot and obtain a suspension; stirring the suspension while maintaining the temperature of the suspension at about 35° C.; adding Nigella sativa seed extract to the suspension while raising the temperature of the suspension to about 60° C.; adding hydrogen peroxide to the suspension; and isolating the reduced graphene oxide nanoparticles by centrifugation.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: May 22, 2018
    Assignee: KING SAUD UNIVERSITY
    Inventors: Manal Ahmed Gasmelseed Awad, Awatif Ahmed Hendi, Khalid Mustafa Osman Ortashi, Amel Laref
  • Patent number: 9850133
    Abstract: The green synthesis of reduced graphene oxide nanoparticles using Nigella sativa seed extract comprises the steps of mixing a quantity of soot or other carbon source in an acid solution while stirring to obtain a solution; adding a first oxidant gradually into the solution to oxidize the soot and obtain a suspension; stirring the suspension while maintaining the temperature of the suspension at about 35° C.; adding Nigella sativa seed extract to the suspension while raising the temperature of the suspension to about 60° C.; adding hydrogen peroxide to the suspension; and isolating the reduced graphene oxide nanoparticles by centrifugation.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: December 26, 2017
    Assignee: KING SAUD UNIVERSITY
    Inventors: Manal Ahmed Gasmelseed Awad, Awatif Ahmed Hendi, Khalid Mustafa Osman Ortashi, Amel Laref
  • Publication number: 20170327381
    Abstract: The green synthesis of reduced graphene oxide nanoparticles using Nigella sativa seed extract comprises the steps of mixing a quantity of soot or other carbon source in an acid solution while stirring to obtain a solution; adding a first oxidant gradually into the solution to oxidize the soot and obtain a suspension; stirring the suspension while maintaining the temperature of the suspension at about 35° C.; adding Nigella sativa seed extract to the suspension while raising the temperature of the suspension to about 60° C.; adding hydrogen peroxide to the suspension; and isolating the reduced graphene oxide nanoparticles by centrifugation.
    Type: Application
    Filed: May 17, 2017
    Publication date: November 16, 2017
    Inventors: MANAL AHMED GASMELSEED AWAD, AWATIF AHMED HENDI, KHALID MUSTAFA OSMAN ORTASHI, AMEL LAREF
  • Publication number: 20170327382
    Abstract: The green synthesis of reduced graphene oxide nanoparticles using Nigella sativa seed extract comprises the steps of mixing a quantity of soot or other carbon source in an acid solution while stirring to obtain a solution; adding a first oxidant gradually into the solution to oxidize the soot and obtain a suspension; stirring the suspension while maintaining the temperature of the suspension at about 35° C.; adding Nigella sativa seed extract to the suspension while raising the temperature of the suspension to about 60° C.; adding hydrogen peroxide to the suspension; and isolating the reduced graphene oxide nanoparticles by centrifugation.
    Type: Application
    Filed: May 17, 2017
    Publication date: November 16, 2017
    Inventors: MANAL AHMED GASMELSEED AWAD, AWATIF AHMED HENDI, KHALID MUSTAFA OSMAN ORTASHI, AMEL LAREF
  • Publication number: 20170327380
    Abstract: The green synthesis of reduced graphene oxide nanoparticles using Nigella sativa seed extract comprises the steps of mixing a quantity of soot or other carbon source in an acid solution while stirring to obtain a solution; adding a first oxidant gradually into the solution to oxidize the soot and obtain a suspension; stirring the suspension while maintaining the temperature of the suspension at about 35° C.; adding Nigella sativa seed extract to the suspension while raising the temperature of the suspension to about 60° C.; adding hydrogen peroxide to the suspension; and isolating the reduced graphene oxide nanoparticles by centrifugation.
    Type: Application
    Filed: May 17, 2017
    Publication date: November 16, 2017
    Inventors: Manal Ahmed Gasmelseed Awad, Awatif Ahmed Hendi, Khalid Mustafa Osman Ortashi, Amel Laref
  • Publication number: 20170326097
    Abstract: The green synthesis of a reduced graphene oxide (rGO) silica (SiO2) nanocomposite using Nigella sativa seed extract includes mixing a quantity of carbon source in an acid solution while stirring to obtain a solution; adding a first oxidant gradually into said solution to oxidize the soot and obtain a first suspension; stirring the first suspension while maintaining a temperature of said suspension to about 35° C.; adding plant seeds extract to the first suspension while raising the temperature of the suspension to about 60° C.; adding a second oxidant to said suspension to form the reduced graphene oxide nanoparticles; isolating the reduced graphene oxide nanoparticles by centrifugation; suspending the reduced graphene oxide nanoparticles in water; adding a solution comprising tetraethyl orthosilicate (TEOS), concentrated aqueous ammonia solution and a plant seeds extract under ultrasonication; and increasing the temperature to about 90° C.
    Type: Application
    Filed: May 10, 2016
    Publication date: November 16, 2017
    Inventors: MANAL AHMED GASMELSEED AWAD, AWATIF AHMED HENDI, KHALID MUSTAFA OSMAN ORTASHI, AMEL LAREF
  • Patent number: 9815701
    Abstract: The synthesis of reduced graphene oxide nanoparticles includes the steps of: mixing soot with an acid to obtain a solution; adding a first oxidant gradually into the solution to oxidize the carbon source and obtain a suspension; stirring the suspension while maintaining a temperature of the suspension at about 35° C.; raising the temperature of the suspension to about 60° C.; adding water into the solution; adding a second oxidant into the suspension while stirring resulting in the oxidation of the carbon source to form the reduced graphene oxide nanoparticles; and isolating the resulting reduced graphene oxide nanoparticles by centrifugation. The acid is preferably an acid mixture including, for example, sulfuric acid (H2SO4) and phosphoric acid (H3PO4). The first and second oxidants can be potassium permanganate (KMnO4) or hydrogen peroxide (H2O2).
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: November 14, 2017
    Assignee: KING SAUD UNIVERSITY
    Inventors: Manal Ahmed Gasmelseed Awad, Awatif Ahmed Hendi, Khalid Mustafa Osman Ortashi, Amel Laref, Nawal Ahmad Madkhali, Hajar Abdullah Aldakhil, Fatimah Yahya Mohammad Al-Abbas, Lena Jassim
  • Patent number: 9688539
    Abstract: The green synthesis of reduced graphene oxide nanoparticles using Nigella sativa seed extract comprises the steps of mixing a quantity of soot or other carbon source in an acid solution while stirring to obtain a solution; adding a first oxidant gradually into the solution to oxidize the soot and obtain a suspension; stirring the suspension while maintaining the temperature of the suspension at about 35° C.; adding Nigella sativa seed extract to the suspension while raising the temperature of the suspension to about 60° C.; adding hydrogen peroxide to the suspension; and isolating the reduced graphene oxide nanoparticles by centrifugation.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: June 27, 2017
    Assignee: KING SAUD UNIVERSITY
    Inventors: Manal Ahmed Gasmelseed Awad, Awatif Ahmed Hendi, Khalid Mustafa Osman Ortashi, Amel Laref