Patents by Inventor Amir Handelman

Amir Handelman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11868130
    Abstract: A system and method for decision making for autonomous vehicles. The method includes determining if a decision scenario is present; generating a first random number; communicating the first random number to a receiver via visible light communication; receiving a second random number and determining a priority order based on the generated random numbers. The priority is communicated to all relevant units to determine the order in which the vehicles should proceed. An optical random generator may be used to generate the random number associated with each vehicle.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: January 9, 2024
    Assignee: LAKURUMA SYSTEMS LTD.
    Inventor: Amir Handelman
  • Publication number: 20230218438
    Abstract: Aspects of embodiments pertain to an intraoperative ophthalmic tissue monitoring system, comprising at least one sensor configured to sense a physical quantity relating to an ophthalmic tissue characteristic of an eye. The system is further configured to provide, responsive to sensing the physical quantity, a sensor output relating to the sensed physical quantity. The system additionally comprises a processor, and a memory comprising for storing software executable by the processor for enabling the following: controlling, based on the sensor output, a characteristic of ultrasound energy for performing phacoemulsification of a lens of the eye.
    Type: Application
    Filed: June 23, 2021
    Publication date: July 13, 2023
    Inventors: Yoav NAHUM, Amir HANDELMAN
  • Patent number: 11695476
    Abstract: A system and method for optimizing optical communication for autonomous vehicles, including: determining a predetermined route of a vehicle equipped with an optical communication device (OCD) including an array of micromirrors; determining a location of at least one infrastructure unit along the predetermined route; determining optimal angles for the array of micromirrors based on the predetermined route and the determined location of the at least one infrastructure unit to optimize optical communication between the OCD and the at least one infrastructure unit; and adjusting the array of micromirrors based on the determined optimal angles.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: July 4, 2023
    Assignee: LAKURUMA SYSTEMS LTD.
    Inventors: Amir Handelman, David Geva
  • Publication number: 20220321216
    Abstract: A system and method for generating a continuous line-of-sight optimized optical communication between a public transportation vehicle and an infrastructure are provided. The method determining a location of at least one infrastructure unit along a predetermined route; detecting an approaching public transportation vehicle; determining a speed of the public transportation vehicle by an accelerometer; computing a position of the public transportation vehicle with respect to the at least one infrastructure unit based on the speed; and establishing a bi-directional link based on modulated light emitted from the public transportation vehicle and from the at least one infrastructure unit based on the position of the public transportation vehicle train.
    Type: Application
    Filed: April 6, 2022
    Publication date: October 6, 2022
    Applicant: Lakuruma Systems Ltd.
    Inventor: Amir HANDELMAN
  • Publication number: 20210344423
    Abstract: A system and method for optimizing optical communication for autonomous vehicles, including: determining a predetermined route of a vehicle equipped with an optical communication device (OCD) including an array of micromirrors; determining a location of at least one infrastructure unit along the predetermined route; determining optimal angles for the array of micromirrors based on the predetermined route and the determined location of the at least one infrastructure unit to optimize optical communication between the OCD and the at least one infrastructure unit; and adjusting the array of micromirrors based on the determined optimal angles.
    Type: Application
    Filed: July 15, 2021
    Publication date: November 4, 2021
    Inventors: Amir HANDELMAN, David GEVA
  • Patent number: 10831108
    Abstract: Methods are provided for deriving a partially continuous dependency of metrology metric(s) on recipe parameter(s), analyzing the derived dependency, determining a metrology recipe according to the analysis, and conducting metrology measurement(s) according to the determined recipe. The dependency may be analyzed in form of a landscape such as a sensitivity landscape in which regions of low sensitivity and/or points or contours of low or zero inaccuracy are detected, analytically, numerically or experimentally, and used to configure parameters of measurement, hardware and targets to achieve high measurement accuracy. Process variation is analyzed in terms of its effects on the sensitivity landscape, and these effects are used to characterize the process variation further, to optimize the measurements and make the metrology both more robust to inaccuracy sources and more flexible with respect to different targets on the wafer and available measurement conditions.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: November 10, 2020
    Assignee: KLA Corporation
    Inventors: Tal Marciano, Barak Bringoltz, Evgeni Gurevich, Ido Adam, Ze'ev Lindenfeld, Zeng Zhao, Yoel Feler, Daniel Kandel, Nadav Carmel, Amnon Manassen, Nuriel Amir, Oded Kaminsky, Tal Yaziv, Ofer Zaharan, Moshe Cooper, Roee Sulimarski, Tom Leviant, Noga Sella, Boris Efraty, Lilach Saltoun, Amir Handelman, Eltsafon Ashwal, Ohad Bachar
  • Publication number: 20200278677
    Abstract: A system and method for decision making for autonomous vehicles. The method includes determining if a decision scenario is present; generating a first random number; communicating the first random number to a receiver via visible light communication; receiving a second random number and determining a priority order based on the generated random numbers. The priority is communicated to all relevant units to determine the order in which the vehicles should proceed. An optical random generator may be used to generate the random number associated with each vehicle.
    Type: Application
    Filed: March 2, 2020
    Publication date: September 3, 2020
    Inventor: Amir HANDELMAN
  • Patent number: 10115584
    Abstract: A porous layer is described. The porous layer comprises a solidified sol-gel inorganic material having a distribution of nanometric voids, wherein at least some of nanometric voids are at least partially coated internally by carbon or a hydrophobic substance containing carbon.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: October 30, 2018
    Assignees: Ramot at Tel-Aviv University Ltd., Tower Semiconductor Ltd.
    Inventors: Simon Litsyn, Gil Rosenman, Amir Handelman, Yakov Roizin
  • Publication number: 20180005820
    Abstract: A porous layer is described. The porous layer comprises a solidified sol-gel inorganic material having a distribution of nanometric voids, wherein at least some of nanometric voids are at least partially coated internally by carbon or a hydrophobic substance containing carbon.
    Type: Application
    Filed: August 30, 2017
    Publication date: January 4, 2018
    Applicants: Ramot at Tel-Aviv University Ltd., Tower Semiconductor Ltd.
    Inventors: Simon LITSYN, Gil ROSENMAN, Amir HANDELMAN, Yakov ROIZIN
  • Publication number: 20160313658
    Abstract: Methods are provided for deriving a partially continuous dependency of metrology metric(s) on recipe parameter(s), analyzing the derived dependency, determining a metrology recipe according to the analysis, and conducting metrology measurement(s) according to the determined recipe. The dependency may be analyzed in form of a landscape such as a sensitivity landscape in which regions of low sensitivity and/or points or contours of low or zero inaccuracy are detected, analytically, numerically or experimentally, and used to configure parameters of measurement, hardware and targets to achieve high measurement accuracy. Process variation is analyzed in terms of its effects on the sensitivity landscape, and these effects are used to characterize the process variation further, to optimize the measurements and make the metrology both more robust to inaccuracy sources and more flexible with respect to different targets on the wafer and available measurement conditions.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 27, 2016
    Inventors: Tal Marciano, Barak Bringoltz, Evgeni Gurevich, Ido Adam, Ze'ev Lindenfeld, Zeng Zhao, Yoel Feler, Daniel Kandel, Nadav Carmel, Amnon Manassen, Nuriel Amir, Oded Kaminsky, Tal Yaziv, Ofer Zaharan, Moshe Cooper, Roee Sulimarski, Tom Leviant, Noga Sella, Boris Efraty, Lilach Saltoun, Amir Handelman, Eltsafon Ashwal, Ohad Bachar
  • Publication number: 20150108618
    Abstract: A porous layer is described. The porous layer comprises a solidified sol-gel inorganic material having a distribution of nanometric voids, wherein at least some of nanometric voids are at least partially coated internally by carbon or a hydrophobic substance containing carbon.
    Type: Application
    Filed: May 7, 2013
    Publication date: April 23, 2015
    Inventors: Simon Litsyn, Gil Rosenman, Amir Handelman, Yakov Roizin