Patents by Inventor Amir Naveh
Amir Naveh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250148338Abstract: A method, apparatus and product for executing a quantum circuit by a quantum execution platform, comprising: obtaining the quantum circuit, the quantum circuit comprises first and second qubit allocation instructions, the first qubit allocation instruction instructing to obtain a first set of qubits at an initial cycle, the second qubit allocation instruction instructing to obtain a second set of qubits at an intermediate cycle ordered after the initial cycle; performing an execution of cycles of the quantum circuit, said performing comprises allocating, for the initial cycle, qubits from a qubit pool to be utilized by the quantum circuit, the qubits corresponding to the first set of qubits; and in response to the execution reaching the intermediate cycle, dynamically allocating at least one additional qubit from the qubit pool to be utilized by the quantum circuit, the at least one additional qubit corresponding to the second set of qubits.Type: ApplicationFiled: December 30, 2024Publication date: May 8, 2025Inventors: Amir Naveh, Shmuel Ur, Eyal Cornfeld, Nir Minerbi, Yehuda Naveh, Ofek Kirzner, Ravid Alon
-
Patent number: 12293256Abstract: A method for optimizing a quantum circuit includes obtaining a quantum circuit model comprising one or more quantum operations, wherein at least one quantum operation is marked as having permutable input registers. An optimization goal for the quantum circuit is determined. A processor selects a permutation of the input registers for the at least one marked quantum operation based on the optimization goal. An optimized quantum circuit is generated based on the selected permutation. The method may further include providing the generated optimized quantum circuit for execution by a quantum execution platform.Type: GrantFiled: September 24, 2024Date of Patent: May 6, 2025Assignee: CLASSIQ TECHNOLOGIES LTD.Inventors: Amir Naveh, Shmuel Ur, Eyal Cornfeld, Nati Erez, Nir Minerbi
-
Publication number: 20250139339Abstract: A Graphical User Interface (GUI) is used to display a graphical representation of an abstract quantum circuit. The abstract quantum circuit includes input ports, output ports, wires, and instances. At least one of the instances is an abstract instance of a module that represents a duplication of a quantum operation defined by the module. The abstract quantum circuit is compiled to obtained a quantum circuit. Compiling the abstract quantum circuit comprises replacing the abstract instance with a plurality of instances of the module, whereby concretizing the abstract instance.Type: ApplicationFiled: October 31, 2023Publication date: May 1, 2025Inventors: Amir Naveh, Shmuel Ur, Avi Elazari, Nadav Yoran, Adam Goldfeld, Yehuda Naveh
-
Publication number: 20250131311Abstract: A method, apparatus and product for executing a quantum circuit by a quantum execution platform, comprising: obtaining the quantum circuit, the quantum circuit comprises first and second qubit allocation instructions, the first qubit allocation instruction instructing to obtain a first set of qubits at an initial cycle, the second qubit allocation instruction instructing to obtain a second set of qubits at an intermediate cycle ordered after the initial cycle; performing an execution of cycles of the quantum circuit, said performing comprises allocating, for the initial cycle, qubits from a qubit pool to be utilized by the quantum circuit, the qubits corresponding to the first set of qubits; and in response to the execution reaching the intermediate cycle, dynamically allocating at least one additional qubit from the qubit pool to be utilized by the quantum circuit, the at least one additional qubit corresponding to the second set of qubits.Type: ApplicationFiled: December 20, 2024Publication date: April 24, 2025Inventors: Amir Naveh, Shmuel Ur, Eyal Cornfeld, Nir Minerbi, Yehuda Naveh, Ofek Kirzner, Ravid Alon
-
Publication number: 20250131298Abstract: A method, apparatus, and product includes obtaining a quantum program having one or more functionalities that are intended to be implemented as quantum operations in a quantum circuit, where the quantum program is not executable on a quantum execution platform; compiling a first portion of the quantum program to generate a first quantum circuit that is executable on the quantum execution platform; providing the first quantum circuit to the quantum execution platform to be executed thereby; compiling a second portion of the quantum program to generate a second quantum circuit that is executable on the quantum execution platform, where the first and second portions of the quantum program are disjoint non-overlapping portions of the quantum program; and providing the second quantum circuit to the quantum execution platform to be executed thereby, thereby performing an iterative compilation and execution of the quantum program.Type: ApplicationFiled: October 18, 2023Publication date: April 24, 2025Inventors: Amir Naveh, Shmuel Ur, Eyal Cornfeld, Nir Minerbi, Yehuda Naveh, Ofek Kirzner, Ravid Alon
-
Publication number: 20250131299Abstract: A method, apparatus and product includes dynamically selecting a distribution of a compilation process of a quantum program between a first software compiler and a second software compiler, the selecting including selecting to perform a first set of computations of the compilation process at the first software compiler, and to perform a second set of computations of the compilation process at the second software compiler; generating, at the first software compiler, an intermediate-level data structure based on the quantum program by performing the first set of computations; providing the intermediate-level data structure from the first software compiler to the second software compiler; generating, by the second software compiler, a quantum circuit implementing the intermediate-level data structure by performing the second set of computations; and providing the quantum circuit to a quantum execution platform for execution thereby.Type: ApplicationFiled: October 19, 2023Publication date: April 24, 2025Inventors: Amir Naveh, Shmuel Ur, Eyal Cornfeld, Nir Minerbi, Yehuda Naveh, Ofek Kirzner, Ravid Alon
-
Publication number: 20250131312Abstract: A method, apparatus and product for executing a quantum circuit by a quantum execution platform, comprising: obtaining the quantum circuit, the quantum circuit comprises first and second qubit allocation instructions, the first qubit allocation instruction instructing to obtain a first set of qubits at an initial cycle, the second qubit allocation instruction instructing to obtain a second set of qubits at an intermediate cycle ordered after the initial cycle; performing an execution of cycles of the quantum circuit, said performing comprises allocating, for the initial cycle, qubits from a qubit pool to be utilized by the quantum circuit, the qubits corresponding to the first set of qubits; and in response to the execution reaching the intermediate cycle, dynamically allocating at least one additional qubit from the qubit pool to be utilized by the quantum circuit, the at least one additional qubit corresponding to the second set of qubits.Type: ApplicationFiled: December 24, 2024Publication date: April 24, 2025Inventors: Amir Naveh, Shmuel Ur, Eyal Cornfeld, Nir Minerbi, Yehuda Naveh, Ofek Kirzner, Ravid Alon
-
Publication number: 20250131302Abstract: A method, apparatus and product for executing a quantum circuit by a quantum execution platform, includes obtaining the quantum circuit, the quantum circuit having first and second qubit allocation instructions, the first qubit allocation instruction instructing to obtain a first set of qubits at an initial cycle, the second qubit allocation instruction instructing to obtain a second set of qubits at an intermediate cycle ordered after the initial cycle; performing an execution of cycles of the quantum circuit, said performing including allocating, for the initial cycle, qubits from a qubit pool to be utilized by the quantum circuit, the qubits corresponding to the first set of qubits, and in response to the execution reaching the intermediate cycle, dynamically allocating at least one additional qubit from the qubit pool to be utilized by the quantum circuit, the at least one additional qubit corresponding to the second set of qubits.Type: ApplicationFiled: October 18, 2023Publication date: April 24, 2025Inventors: Amir Naveh, Shmuel Ur, Eyal Cornfeld, Nir Minerbi, Yehuda Naveh, Ofek Kirzner, Ravid Alon
-
Publication number: 20250124329Abstract: A method, apparatus and product comprising: generating, by a first software compiler, an intermediate-level data structure based on a quantum program, the intermediate-level data structure is a Directed Acyclic Graph (DAG) that is a non-executable representation of the quantum program; initiating a first execution of the quantum program at the quantum execution platform by: obtaining, at a second software compiler, first real-time constraints on an availability of resources of the quantum execution platform for the first execution; generating, based on the first real-time constraints, a first quantum circuit that implements the DAG; and providing the first quantum circuit to the quantum execution platform to be executed thereon; and initiating a second execution of the quantum program at the quantum execution platform by: obtaining second real-time constraints on an availability of resources; generating a second quantum circuit; and providing the second quantum circuit to the quantum execution platform.Type: ApplicationFiled: May 17, 2024Publication date: April 17, 2025Inventors: Amir Naveh, Shmuel Ur, Eyal Cornfeld, Nir Minerbi, Yehuda Naveh, Ofek Kirzner, Ravid Alon
-
Patent number: 12248020Abstract: A method, apparatus, and product comprising: obtaining a representation of a quantum circuit; determining that a qubit is a candidate auxiliary qubit by estimating that a state of the qubit at a first cycle is identical to a state of the qubit at a second cycle; identifying a function section in the quantum circuit based on the qubit, the function section commencing at a beginning cycle, the beginning cycle is ordered before the second cycle, the function section ending at an ending cycle, the ending cycle is ordered after the first cycle, the ending cycle is ordered after the commencing cycle, the function section utilizing the qubit as an auxiliary qubit; and outputting an indication of the function section.Type: GrantFiled: August 4, 2022Date of Patent: March 11, 2025Assignee: CLASSIQ TECHNOLOGIES LTD.Inventors: Amir Naveh, Shmuel Ur, Eyal Cornfeld, Ofek Kirzner, Nir Minerbi
-
Publication number: 20250036989Abstract: A method, apparatus, and computer product comprising: obtaining a multitree data structure that represents a plurality of ordered Pauli-terms, the plurality of ordered Pauli-terms representing an exponentiation module, wherein implementing a Pauli-term in a quantum circuit requires to implement a basis change stage and a parity summation stage, the multitree data structure comprises root nodes representing the plurality of Pauli-terms, leaf nodes representing qubits, and a non-leaf node; converting the multitree data structure to an ordered binary multitree that comprises an additional node; and synthesizing the quantum circuit based on the ordered binary multitree, whereby the quantum circuit comprises an implementation of the parity summation stage and an implementation of the basis change stage, whereby the quantum circuit implements at least one cancellation of a given CX gate of the parity summation stage.Type: ApplicationFiled: July 27, 2023Publication date: January 30, 2025Inventors: Amir Naveh, Shmuel Ur, Eyal Cornfeld, Ofek Kirzner, Nir Minerbi
-
Publication number: 20250036991Abstract: A method, apparatus, and computer product for scheduling Pauli-terms by selecting an order for the Pauli-terms, comprising: obtaining first and second ordered sets of Pauli-terms; obtaining first and second multitree data structures representing the first and second ordered sets, respectively; and determining whether or not the first and second ordered sets should be concatenated by: generating a third multitree data structure that represents all Pauli-terms of the first and second ordered sets; calculating a difference between a resource utilization score of the third multitree data structure and between resource utilization scores of the first and second multitree data structures; and based on the difference, determining whether or not the first and second ordered sets should be concatenated.Type: ApplicationFiled: July 27, 2023Publication date: January 30, 2025Inventors: Amir Naveh, Shmuel Ur, Eyal Cornfeld, Ofek Kirzner, Nir Minerbi
-
Publication number: 20250036990Abstract: A method, apparatus, and computer product for constructing a multitree data structure, comprising: obtaining Pauli-terms that are associated with qubits, each Pauli-term defines at least one active qubit, the Pauli-terms are ordered according to a defined order; generating an auxiliary graph that represents the Pauli-terms, the auxiliary graph comprising graph nodes that represent the Pauli-terms, the graph nodes are ordered consecutively according to the defined order, an interface between first and second consecutive graph nodes represents a set of active qubits that is active in first and second Pauli-terms, the first and second Pauli-terms are represented by the first and second consecutive graph nodes; and generating the multitree data structure based on the auxiliary graph.Type: ApplicationFiled: July 27, 2023Publication date: January 30, 2025Inventors: Amir Naveh, Shmuel Ur, Eyal Cornfeld, Ofek Kirzner, Nir Minerbi
-
Publication number: 20250036988Abstract: Method, computer program products and apparatuses for preconditional implementation swaps between quantum functions in order to improving a target optimization metric when executing the modified quantum circuit. A quantum circuit comprising a quantum function configured to receive input qubits and perform a manipulation thereon is obtained with input conditions on at least a portion of the input qubits, that are guaranteed to be met when the quantum function is utilized by the quantum circuit. A set of equivalent quantum functions that are equivalent to the quantum function under the input conditions is determined, such as using an equivalences graph representing equivalent functions under various input conditions. An optimized quantum function is selected from the set based on a target optimization metric. A modified improved quantum circuit is generated by replacing the quantum function with the optimized quantum function.Type: ApplicationFiled: July 27, 2023Publication date: January 30, 2025Inventors: Amir Naveh, Shmuel Ur, Nathaniel Rosenbloom, Peleg Emanuel, Ravid Alon, Ofek Kirzner, Yehuda Naveh
-
Publication number: 20250021857Abstract: A method, apparatus and product comprising: obtaining a Directed Cycle Graph (DAG) representation of a quantum program, the DAG representation comprises at least one non-executable node that represents a functionality in a high-level representation; generating a Constraint Satisfaction Problem (CSP) model of the DAG representation; generating a partial DAG representation of the quantum program based on the DAG representation, the partial DAG representation comprising at least a first executable node and a second non-executable node, said generating comprising selecting the first executable node and the second non-executable node as implementations of the at least one non-executable node; and synthesizing the quantum program based on the partial DAG representation.Type: ApplicationFiled: June 18, 2024Publication date: January 16, 2025Inventors: Amir Naveh, Shmuel Ur, Yehuda Naveh, Ofek Kirzner, Ravid Alon, Tal Goren, Adam Goldfeld, Nir Minerbi
-
Publication number: 20240394580Abstract: A method, a computerized apparatus, and a computer program product for automatic quantum circuit control skips. The method comprises obtaining a controlled sequence of quantum operations defining a complete order with at least two computation-uncomputation pairs of operations separated by a sub-sequence of one or more quantum operations. Computation-uncomputation pairs to be reduced are selected based on an optimization of a score of the reduced control sequence in comparison to a score of an alternative reduced control sequence in which the pairs are not reduced, in accordance with a score of each operation in a respective quantum circuit control. A reduced control sequence with a reduced number of controls is obtained by excluding a selected computation-uncomputation pairs of operations.Type: ApplicationFiled: May 24, 2023Publication date: November 28, 2024Inventors: Amir Naveh, Shmuel Ur, Peleg Emanuel, Ravid Alon, Ofek Kirzner, Eyal Cornfeld
-
Patent number: 12086687Abstract: A method, system and product comprising: obtaining a functional-level representation of a quantum circuit that comprises a functional block; obtaining an indication of one or more resources that are available to the functional block, the indication regarding a range of cycles and an indication regarding a number of qubits; dynamically generating a gate-level implementation of the functional block that adheres to the indication of the one or more resources; and synthesizing a gate-level implementation of the quantum circuit, wherein the gate-level implementation of the quantum circuit comprises the gate-level implementation of the functional block.Type: GrantFiled: October 12, 2021Date of Patent: September 10, 2024Assignee: CLASSIQ TECHNOLOGIES LTD.Inventors: Amir Naveh, Shmuel Ur, Yehuda Naveh, Ofek Kirzner, Ravid Alon, Tal Goren, Adam Goldfeld, Jonatan Zimmermann, Nir Minerbi
-
Patent number: 12086686Abstract: A method, system and product comprising: obtaining a gate-level representation of a quantum circuit, wherein the gate-level representation comprises a set of quantum gates defining operations on a set of qubits, wherein the gate-level representation comprises a gate-level implementation of a functional block of a functional-level representation of the quantum circuit, wherein the functional block defines an operation of the quantum circuit over at least two cycles; obtaining metadata from a functional-level processing component, wherein the metadata comprise an artifact associated with the gate-level implementation of the functional block; and compiling the gate-level representation of the quantum circuit, wherein said compiling is performed based on the metadata.Type: GrantFiled: October 12, 2021Date of Patent: September 10, 2024Assignee: CLASSIQ TECHNOLOGIES LTD.Inventors: Amir Naveh, Shmuel Ur, Yehuda Naveh, Ofek Kirzner, Ravid Alon, Tal Goren, Nir Minerbi
-
Publication number: 20240289675Abstract: A method, apparatus and product comprising: obtaining a logical representation of a quantum circuit, wherein the logical representation comprises a plurality of logical qubits manipulated by a plurality of logical gates; and generating a physical representation of the quantum circuit, the physical representation is configured to allocate a set of physical qubits of a quantum computer to the plurality of logical qubits in order to implement error correction operations The generating includes selecting a first quantity of physical qubits from the set of physical qubits for a first separate section of the quantum circuit; selecting a second quantity of physical qubits from the set of physical qubits for a second separate section of the quantum circuit, and synthesizing the quantum circuit using the first and second quantities for the first and second separate sections.Type: ApplicationFiled: November 28, 2023Publication date: August 29, 2024Inventors: Amir Naveh, Shmuel Ur, Eyal Cornfeld, Ofek Kirzner, Yehuda Naveh, Lior Gazit
-
Patent number: 12073291Abstract: A method, system and product comprising: obtaining a functional-level representation of a quantum circuit that comprises a functional block, wherein the functional block defines an operation of the quantum circuit over at least two cycles; selecting from a function library an implementation for the functional block, wherein the function library comprises a plurality of alternative implementations of the functional block, wherein each implementation of the plurality of alternative implementations is configured to provide a same functionality of the functional block and is applicable to a quantum computer to be used for executing the quantum circuit; and generating a gate-level representation of the quantum circuit that comprises the implementation for the functional block.Type: GrantFiled: October 12, 2021Date of Patent: August 27, 2024Assignee: CLASSIQ TECHNOLOGIES LTD.Inventors: Amir Naveh, Shmuel Ur, Yehuda Naveh, Ofek Kirzner, Ravid Alon, Tal Goren, Adam Goldfeld, Nir Minerbi