Patents by Inventor Amir Pourmorteza

Amir Pourmorteza has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210324315
    Abstract: In some embodiments, the systems and methods of the disclosure can provide high-throughput, programmable, and fully automatized tissue and/or cell culture and analysis platforms. In some embodiments, a culture analysis system may include a culture device that includes a cover configured to be secured to a main body, which may include one or more chambers. The cover may include one or more regions that overlaps with the one or more chambers of the main body when the cover is secured to a main body so that each region corresponds to a chamber of the main body. The cover may also include a fluidic pathway disposed in each region and configured be in fluidic communication with a corresponding chamber. Each fluidic pathway may include a fluid inlet and a fluid outlet disposed in each region. The cover may also include an optical pathway disposed in each region for the corresponding chamber.
    Type: Application
    Filed: July 17, 2019
    Publication date: October 21, 2021
    Inventors: Vahid Serpooshan, Ayda Melika, Amir Pourmorteza
  • Patent number: 10959618
    Abstract: The present invention is directed to a method for combining assessment of different factors of dyssynchrony into a comprehensive, non-invasive toolbox for treating patients with a CRT therapy device. The toolbox provides high spatial resolution, enabling assessment of regional function, as well as enabling derivation of global metrics to improve patient response and selection for CRT therapy. The method allows for quantitative assessment and estimation of mechanical contraction patterns, tissue viability, and venous anatomy from CT scans combined with electrical activation patterns from Body Surface Potential Mapping (BSPM). This multi-modal method is therefore capable of integrating electrical, mechanical, and structural information about cardiac structure and function in order to guide lead placement of CRT therapy devices. The method generates regional electro-mechanical properties overlaid with cardiac venous distribution and scar tissue.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: March 30, 2021
    Assignee: The Johns Hopkins University
    Inventors: Fady Dawoud, Karl H. Schuleri, Amir Pourmorteza, Albert C. Lardo, Elliot McVeigh
  • Publication number: 20200151880
    Abstract: A device receives a prior image associated with an anatomy of interest, and receives measurements associated with the anatomy of interest. The device processes the prior image and the measurements, with a reconstruction of difference technique, to generate a difference image associated with the anatomy of interest, wherein the difference image indicates one or more differences between the prior image and the measurements. The device generates, based on the difference image and the prior image, a final image associated with the anatomy of interest, and provides, for display, the final image associated with the anatomy of interest.
    Type: Application
    Filed: June 1, 2018
    Publication date: May 14, 2020
    Applicant: The Johns Hopkins University
    Inventors: Joseph Webster STAYMAN, Amir POURMORTEZA, Jeffrey H. SIEWERDSEN
  • Patent number: 10448901
    Abstract: An embodiment in accordance with the present invention provides a method and system for evaluating regional cardiac function and dyssynchrony from an imaging modality using the motion of endocardial features of the heart. In the method and system, an imaging modality such as a CT scanner is used to obtain an image sequence that is then processed using a computer program. The computer program is configured to create an endocardial mesh formed from triangular components that represents at least the region of interest of the subject's heart. From tracking the motion of conserved topological features on this endocardial mesh at least two time points a displacement map can be modeled. The displacement map can be further analyzed to determine metrics of regional cardiac function such as SQUEEZ, myocardial strain, torsion etc., and the displacement map can also be used to create visual representations of the function of the subject's heart.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: October 22, 2019
    Assignee: The Johns Hopkins University
    Inventors: Elliot Ross McVeigh, Amir Pourmorteza
  • Publication number: 20170071675
    Abstract: The present invention is directed to a method for combining assessment of different factors of dyssynchrony into a comprehensive, non-invasive toolbox for treating patients with a CRT therapy device. The toolbox provides high spatial resolution, enabling assessment of regional function, as well as enabling derivation of global metrics to improve patient response and selection for CRT therapy. The method allows for quantitative assessment and estimation of mechanical contraction patterns, tissue viability, and venous anatomy from CT scans combined with electrical activation patterns from Body Surface Potential Mapping (BSPM). This multi-modal method is therefore capable of integrating electrical, mechanical, and structural information about cardiac structure and function in order to guide lead placement of CRT therapy devices. The method generates regional electro-mechanical properties overlaid with cardiac venous distribution and scar tissue.
    Type: Application
    Filed: May 12, 2015
    Publication date: March 16, 2017
    Inventors: Fady Dawoud, Karl H. Schuleri, Amir Pourmorteza, Albert C. Lardo, Elliot McVeigh
  • Publication number: 20140257083
    Abstract: An embodiment in accordance with the present invention provides a method and system for evaluating regional cardiac function and dyssynchrony from an imaging modality using the motion of endocardial features of the heart. In the method and system, an imaging modality such as a CT scanner is used to obtain an image sequence that is then processed using a computer program. The computer program is configured to create an endocardial mesh formed from triangular components that represents at least the region of interest of the subject's heart. From tracking the motion of conserved topological features on this endocardial mesh at least two time points a displacement map can be modeled. The displacement map can be further analyzed to determine metrics of regional cardiac function such as SQUEEZ, myocardial strain, torsion etc., and the displacement map can also be used to create visual representations of the function of the subject's heart.
    Type: Application
    Filed: October 12, 2012
    Publication date: September 11, 2014
    Inventors: Elliot Ross McVeigh, Amir Pourmorteza