Patents by Inventor Amir Yacoby

Amir Yacoby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12169209
    Abstract: A sensing probe may be formed of a diamond material comprising one or more spin defects that are configured to emit fluorescent light and are located no more than 50 nm from a sensing surface of the sensing probe. The sensing probe may include an optical outcoupling structure formed by the diamond material and configured to optically guide the fluorescent light toward an output end of the optical outcoupling structure. An optical detector may detect the fluorescent light that is emitted from the spin defects and that exits through the output end of the optical outcoupling structure after being optically guided therethrough. A mounting system may hold the sensing probe and control a distance between the sensing surface of the sensing probe and a surface of a sample while permitting relative motion between the sensing surface and the sample surface.
    Type: Grant
    Filed: October 12, 2023
    Date of Patent: December 17, 2024
    Assignee: President and Fellows of Harvard College
    Inventors: Michael S. Grinolds, Sungkun Hong, Patrick Maletinsky, Amir Yacoby
  • Publication number: 20240044938
    Abstract: A sensing probe may be formed of a diamond material comprising one or more spin defects that are configured to emit fluorescent light and are located no more than 50 nm from a sensing surface of the sensing probe. The sensing probe may include an optical outcoupling structure formed by the diamond material and configured to optically guide the fluorescent light toward an output end of the optical outcoupling structure. An optical detector may detect the fluorescent light that is emitted from the spin defects and that exits through the output end of the optical outcoupling structure after being optically guided therethrough. A mounting system may hold the sensing probe and control a distance between the sensing surface of the sensing probe and a surface of a sample while permitting relative motion between the sensing surface and the sample surface.
    Type: Application
    Filed: October 12, 2023
    Publication date: February 8, 2024
    Applicant: President and Fellows of Harvard College
    Inventors: Michael S. GRINOLDS, Sungkun HONG, Patrick MALETINSKY, Amir YACOBY
  • Patent number: 11815528
    Abstract: A sensing probe may be formed of a diamond material comprising one or more spin defects that are configured to emit fluorescent light and are located no more than 50 nm from a sensing surface of the sensing probe. The sensing probe may include an optical outcoupling structure formed by the diamond material and configured to optically guide the fluorescent light toward an output end of the optical outcoupling structure. An optical detector may detect the fluorescent light that is emitted from the spin defects and that exits through the output end of the optical outcoupling structure after being optically guided therethrough. A mounting system may hold the sensing probe and control a distance between the sensing surface of the sensing probe and a surface of a sample while permitting relative motion between the sensing surface and the sample surface.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: November 14, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: Michael S. Grinolds, Sungkun Hong, Patrick Maletinsky, Amir Yacoby
  • Patent number: 11592462
    Abstract: A method of manufacturing, characterizing, mounting, and a system of a probe may include a pillar having a taper angle and at least one engineered defect. The taper angle may be formed using crystallographic- or etching-based techniques. The probe may be mounted to an AFM chip. Furthermore, an RF waveguide may be connected to the AFM chip for providing RF excitation.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: February 28, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: Xu Zhou, Rainer Joachim Stohr, Ling Xie, Amir Yacoby
  • Publication number: 20220413007
    Abstract: A sensing probe may be formed of a diamond material comprising one or more spin defects that are configured to emit fluorescent light and are located no more than 50 nm from a sensing surface of the sensing probe. The sensing probe may include an optical outcoupling structure formed by the diamond material and configured to optically guide the fluorescent light toward an output end of the optical outcoupling structure. An optical detector may detect the fluorescent light that is emitted from the spin defects and that exits through the output end of the optical outcoupling structure after being optically guided therethrough. A mounting system may hold the sensing probe and control a distance between the sensing surface of the sensing probe and a surface of a sample while permitting relative motion between the sensing surface and the sample surface.
    Type: Application
    Filed: February 18, 2022
    Publication date: December 29, 2022
    Applicant: President and Fellows of Harvard College
    Inventors: Michael S. GRINOLDS, Sungkun HONG, Patrick MALETINSKY, Amir YACOBY
  • Publication number: 20200088762
    Abstract: A method of manufacturing, characterizing, mounting, and a system of a probe may include a pillar having a taper angle and at least one engineered defect. The taper angle may be formed using crystallographic- or etching-based techniques. The probe may be mounted to an AFM chip. Furthermore, an RF waveguide may be connected to the AFM chip for providing RF excitation.
    Type: Application
    Filed: March 13, 2018
    Publication date: March 19, 2020
    Inventors: Xu ZHOU, Rainer Joachim STOHR, Ling XIE, Amir YACOBY
  • Publication number: 20180246143
    Abstract: A sensing probe may be formed of a diamond material comprising one or more spin defects that are configured to emit fluorescent light and are located no more than 50 nm from a sensing surface of the sensing probe. The sensing probe may include an optical outcoupling structure formed by the diamond material and configured to optically guide the fluorescent light toward an output end of the optical outcoupling structure. An optical detector may detect the fluorescent light that is emitted from the spin defects and that exits through the output end of the optical outcoupling structure after being optically guided therethrough. A mounting system may hold the sensing probe and control a distance between the sensing surface of the sensing probe and a surface of a sample while permitting relative motion between the sensing surface and the sample surface.
    Type: Application
    Filed: April 27, 2018
    Publication date: August 30, 2018
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Michael S. GRINOLDS, Sungkun HONG, Patrick MALETINSKY, Amir YACOBY
  • Patent number: 10041971
    Abstract: A sensing probe may be formed of a diamond material comprising one or more spin defects that are configured to emit fluorescent light and are located no more than 50 nm from a sensing surface of the sensing probe. The sensing probe may include an optical outcoupling structure formed by the diamond material and configured to optically guide the fluorescent light toward an output end of the optical outcoupling structure. An optical detector may detect the fluorescent light that is emitted from the spin defects and that exits through the output end of the optical outcoupling structure after being optically guided therethrough. A mounting system may hold the sensing probe and control a distance between the sensing surface of the sensing probe and a surface of a sample while permitting relative motion between the sensing surface and the sample surface.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: August 7, 2018
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Michael S. Grinolds, Sungkun Hong, Patrick Maletinsky, Amir Yacoby
  • Patent number: 9702900
    Abstract: A method for performing sub-nanometer three-dimensional magnetic resonance imaging of a sample under ambient conditions using a diamond having at least one shallowly planted nitrogen-vacancy (NV) center. A driving radio-frequency (RF) signal and a microwave signal are applied to provide independent control of the NV spin and the target dark spins. A magnetic-field gradient is applied to the sample with a scanning magnetic tip to provide a narrow spatial volume in which the target dark electronic spins are on resonance with the driving RF field. The sample is controllably scanned by moving the magnetic tip to systematically bring non-resonant target dark spins into resonance with RF signal. The dark spins are measured and mapped by detecting magnetic resonance of said nitrogen-vacancy center at each of said different magnetic tip positions. The dark-spin point-spread-function for imaging the dark spins is directly measured by the NV center.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: July 11, 2017
    Assignees: President and Fellows of Harvard College, University College London
    Inventors: Amir Yacoby, Michael Grinolds, Marc Warner, Kristiaan De Greve, Yuliya Dovzhenko
  • Patent number: 9518336
    Abstract: A synthetic diamond material comprising one or more spin defects having a full width half maximum intrinsic inhomogeneous zero phonon line width of no more than 100 MHz. The method for obtain such a material involves a multi-stage annealing process.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: December 13, 2016
    Assignees: Element Six Limited, President and Fellows of Harvard College
    Inventors: Matthew Markham, Alastair Stacey, Nathalie De Leon, Yiwen Chu, Brendan John Shields, Birgit Judith Maria Hausmann, Patrick Maletinsky, Ruffin Eley Evans, Amir Yacoby, Hongkun Park, Marko Loncar, Mikhail D. Lukin
  • Publication number: 20150299894
    Abstract: A synthetic diamond material comprising one or more spin defects having a full width half maximum intrinsic inhomogeneous zero phonon line width of no more than 100 MHz. The method for obtain such a material involves a multi-stage annealing process.
    Type: Application
    Filed: December 4, 2013
    Publication date: October 22, 2015
    Inventors: Matthew Markham, Alastair Stacey, Nathalie DeLeon, Yiwen Chu, Brendan John Shields, Birgit Judith Maria Hausmann, Patrick Maletinsky, Ruffin Eley Evans, Amir Yacoby, Hongkun Park, Marko Loncar, Mikhail D. Lukin
  • Publication number: 20150253355
    Abstract: A sensing probe may be formed of a diamond material comprising one or more spin defects that are configured to emit fluorescent light and are located no more than 50 nm from a sensing surface of the sensing probe. The sensing probe may include an optical outcoupling structure formed by the diamond material and configured to optically guide the fluorescent light toward an output end of the optical outcoupling structure. An optical detector may detect the fluorescent light that is emitted from the spin defects and that exits through the output end of the optical outcoupling structure after being optically guided therethrough. A mounting system may hold the sensing probe and control a distance between the sensing surface of the sensing probe and a surface of a sample while permitting relative motion between the sensing surface and the sample surface.
    Type: Application
    Filed: August 20, 2013
    Publication date: September 10, 2015
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Michael S. Grinolds, Sungkun Hong, Patrick Maletinsky, Amir Yacoby
  • Patent number: 8723514
    Abstract: The present invention discloses a novel magnetic sensor device performing direct magnetic field imaging, comprising a probe having a conical tip portion which is configured as a sensor having two superconductors separated by a thin non-superconducting layer (such as a Josephson junction based sensor), where the non-superconducting layer is located at the apex portion of said conical tip, thereby defining electron tunneling region(s) at said apex portion. The technique of the present invention enables the sensor device to be very small and to be brought very close to the sample surface.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: May 13, 2014
    Assignee: Yeda Research and Development Company Ltd.
    Inventors: Amit Finkler, Jens Martin, Yuri Myasoedov, Yehonathan Segev, Amir Yacoby, Eli Zeldov
  • Patent number: 8547090
    Abstract: A method is disclosed for increasing the sensitivity of a solid state electronic spin based magnetometer that makes use of individual electronic spins or ensembles of electronic spins in a solid-state lattice, for example NV centers in a diamond lattice. The electronic spins may be configured to undergo a Zeeman shift in energy level when photons of light are applied to the electronic spins followed by pulses of an RF field that is substantially transverse to the magnetic field being detected. The method may include coherently controlling the electronic spins by applying to the electronic spins a sequence of RF pulses that dynamically decouple the electronic spins from mutual spin-spin interactions and from interactions with the lattice. The sequence of RF pulses may be a Hahn spin-echo sequence, a Can Purcell Meiboom Gill sequence, or a MREV8 pulse sequence, by way of example.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: October 1, 2013
    Assignee: President and Fellows of Harvard College
    Inventors: Mikhail D. Lukin, Ronald L. Walsworth, Amir Yacoby, Paola Cappellaro, Jacob M. Taylor, Liang Jiang, Lilian Childress
  • Publication number: 20100315079
    Abstract: A method is disclosed for increasing the sensitivity of a solid state electronic spin based magnetometer that makes use of individual electronic spins or ensembles of electronic spins in a solid-state lattice, for example NV centers in a diamond lattice. The electronic spins may be configured to undergo a Zeeman shift in energy level when photons of light are applied to the electronic spins followed by pulses of an RF field that is substantially transverse to the magnetic field being detected. The method may include coherently controlling the electronic spins by applying to the electronic spins a sequence of RF pulses that dynamically decouple the electronic spins from mutual spin-spin interactions and from interactions with the lattice. The sequence of RF pulses may be a Hahn spin-echo sequence, a Can Purcell Meiboom Gill sequence, or a MREV8 pulse sequence, by way of example.
    Type: Application
    Filed: December 3, 2008
    Publication date: December 16, 2010
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Mikhail Lukin, Ronald L. Walsworth, Amir Yacoby, Paola Capellaro, Jake Taylor, Liang Jiang, Lillian Childress
  • Publication number: 20100207622
    Abstract: The present invention discloses a novel magnetic sensor device performing direct magnetic field imaging, comprising a probe having a conical tip portion which is configured as a sensor having two superconductors separated by a thin non-superconducting layer (such as a Josephson junction based sensor), where the non-superconducting layer is located at the apex portion of said conical tip, thereby defining electron tunneling region(s) at said apex portion. The technique of the present invention enables the sensor device to be very small and to be brought very close to the sample surface.
    Type: Application
    Filed: June 26, 2008
    Publication date: August 19, 2010
    Applicant: YEDA RESEARCH AND DEVELOPMENT COMPANY LTD.
    Inventors: Amit Finkler, Jens Martin, Yuri Myasoedov, Yehonathan Segev, Amir Yacoby, Eli Zeldov