Patents by Inventor Amir Yasseri

Amir Yasseri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190233658
    Abstract: A method for providing a part with a plasma resistant ceramic coating for use in a plasma processing chamber is provided. A patterned mask is placed on the part. A film is deposited over the part. The patterned mask is removed. A plasma resistant ceramic coating is applied on the part.
    Type: Application
    Filed: January 30, 2018
    Publication date: August 1, 2019
    Inventors: Amir A. YASSERI, Duane OUTKA, Hong SHIH, John DAUGHERTY
  • Publication number: 20180318890
    Abstract: An apparatus for conditioning a component of a processing chamber is provided. A tank for holding a megasonic conditioning solution is provided. A mount holds the component immersed in a megasonic conditioning solution, when the tank is filled with the megasonic conditioning solution. A megasonic conditioning solution inlet system delivers the megasonic conditioning solution to the tank. A megasonic transducer head comprises at least one megasonic transducer to provide megasonic energy to the megasonic conditioning solution, wherein the megasonic energy is delivered to the component via the megasonic conditioning solution. A megasonic conditioning solution drain system drains the megasonic conditioning solution from the tank at a location above where the component is held in the megasonic conditioning solution. An actuator moves the megasonic transducer head across the tank.
    Type: Application
    Filed: May 2, 2018
    Publication date: November 8, 2018
    Inventors: Amir A. YASSERI, Hong SHIH, John DAUGHERTY, Duane OUTKA, Lin XU, Armen AVOYAN, Cliff LA CROIX, Girish HUNDI
  • Patent number: 9766063
    Abstract: A method for treating a nonhomogeneous material surface of an object is provided. A plurality of test patches of the surface is treated for different amounts of time wherein the plurality of test patches have a total surface area. A property of each test patch is measured. A calibration curve of the property is generated with respect to time. The calibration curve and a target property are used to obtain a target time. A surface of the object with a surface area, which is greater than the total surface area of the plurality of test patches, is treated for the target time.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: September 19, 2017
    Assignee: Lam Research Corporation
    Inventors: Amir Yasseri, Duane Outka, Michael Lopez
  • Publication number: 20170074646
    Abstract: A method for treating a nonhomogeneous material surface of an object is provided. A plurality of test patches of the surface is treated for different amounts of time wherein the plurality of test patches have a total surface area. A property of each test patch is measured. A calibration curve of the property is generated with respect to time. The calibration curve and a target property are used to obtain a target time. A surface of the object with a surface area, which is greater than the total surface area of the plurality of test patches, is treated for the target time.
    Type: Application
    Filed: September 15, 2015
    Publication date: March 16, 2017
    Inventors: Amir Yasseri, Duane Outka, Michael Lopez
  • Patent number: 8617993
    Abstract: A method is provided for treating the surface of high aspect ratio nanostructures to help protect the delicate nanostructures during some of the rigorous processing involved in fabrication of semiconductor devices. A wafer containing high aspect ratio nanostructures is treated to make the surfaces of the nanostructures more hydrophobic. The treatment may include the application of a primer that chemically alters the surfaces of the nanostructures preventing them from getting damaged during subsequent wet clean processes. The wafer may then be further processed, for example a wet cleaning process followed by a drying process. The increased hydrophobicity of the nanostructures helps to reduce or prevent collapse of the nanostructures.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: December 31, 2013
    Assignee: Lam Research Corporation
    Inventors: Amir A. Yasseri, Ji Zhu, Seokmin Yun, David S. L. Mui, Katrina Mikhaylichenko
  • Patent number: 8529996
    Abstract: This invention provides a new procedure for attaching molecules to semiconductor surfaces, in particular silicon. The molecules, which include, but are not limited to porphyrins and ferrocenes, have been previously shown to be attractive candidates for molecular-based information storage. The new attachment procedure is simple, can be completed in short times, requires minimal amounts of material, is compatible with diverse molecular functional groups, and in some instances affords unprecedented attachment motifs. These features greatly enhance the integration of the molecular materials into the processing steps that are needed to create hybrid molecular/semiconductor information storage devices.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: September 10, 2013
    Assignees: The Regents of the University of California, North Carolina State University
    Inventors: David F. Bocian, Jonathan S. Lindsey, Zhiming Liu, Amir A. Yasseri, Veena Misra, Qian Zhao, Qiliang Li, Shyam Surthi, Robert S. Loewe
  • Publication number: 20110189858
    Abstract: A method is provided for treating the surface of high aspect ratio nanostructures to help protect the delicate nanostructures during some of the rigorous processing involved in fabrication of semiconductor devices. A wafer containing high aspect ratio nanostructures is treated to make the surfaces of the nanostructures more hydrophobic. The treatment may include the application of a primer that chemically alters the surfaces of the nanostructures preventing them from getting damaged during subsequent wet clean processes. The wafer may then be further processed, for example a wet cleaning process followed by a drying process. The increased hydrophobicity of the nanostructures helps to reduce or prevent collapse of the nanostructures.
    Type: Application
    Filed: February 1, 2010
    Publication date: August 4, 2011
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Amir A. Yasseri, Ji Zhu, Seokmin Yun, David S.L. Mui, Katrina Mikhaylichenko
  • Patent number: 7872318
    Abstract: A sensing device includes an optical cavity having two substantially opposed reflective surfaces. At least one nanowire is operatively disposed in the optical cavity. A plurality of metal nanoparticles is established on the at least one nanowire.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: January 18, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Duncan R. Stewart, Amir A. Yasseri, R. Stanley Williams, Theodore I. Kamins
  • Patent number: 7638431
    Abstract: A metal is deposited onto a surface electrochemically using a deposition solution including a metal salt. In making a composite nanostructure, the solution further includes an enhancer that promotes electrochemical deposition of the metal on the nanostructure. In a method of forming catalyzing nanoparticles, the metal preferentially deposits on a selected location of a surface that is exposed through a mask layer instead of on unexposed surfaces. A composite nanostructure apparatus includes an array of nanowires and the metal deposited on at least some nanowire surfaces. Some of the nanowires are heterogeneous, branched and include different adjacent axial segments with controlled axial lengths. In some deposition solutions, the enhancer one or both of controls oxide formation on the surface and causes metal nanocrystal formation. The deposition solution further includes a solvent that carries the metal salt and the enhancer.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: December 29, 2009
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Amir A. Yasseri, Theodore I. Kamins, Shashank Sharma
  • Patent number: 7608905
    Abstract: An apparatus has multiple sets of independently addressable interdigitated nanowires. Nanowires of a set are in electrical communication with other nanowires of the same set and are electrically isolated from nanowires of other sets.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: October 27, 2009
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Alexandre Bratkovski, Amir A. Yasseri, R. Stanley Williams
  • Publication number: 20080090401
    Abstract: An apparatus has multiple sets of independently addressable interdigitated nanowires. Nanowires of a set are in electrical communication with other nanowires of the same set and are electrically isolated from nanowires of other sets.
    Type: Application
    Filed: October 17, 2006
    Publication date: April 17, 2008
    Inventors: Alexandre Bratkovski, Amir A. Yasseri, R. Stanley Williams
  • Publication number: 20080081388
    Abstract: A metal is deposited onto a surface electrochemically using a deposition solution including a metal salt. In making a composite nanostructure, the solution further includes an enhancer that promotes electrochemical deposition of the metal on the nanostructure. In a method of forming catalyzing nanoparticles, the metal preferentially deposits on a selected location of a surface that is exposed through a mask layer instead of on unexposed surfaces. A composite nanostructure apparatus includes an array of nanowires and the metal deposited on at least some nanowire surfaces. Some of the nanowires are heterogeneous, branched and include different adjacent axial segments with controlled axial lengths. In some deposition solutions, the enhancer one or both of controls oxide formation on the surface and causes metal nanocrystal formation. The deposition solution further includes a solvent that carries the metal salt and the enhancer.
    Type: Application
    Filed: September 29, 2006
    Publication date: April 3, 2008
    Inventors: Amir A. Yasseri, Theodore I. Kamins, Shashank Sharma
  • Publication number: 20080079104
    Abstract: A sensing device includes an optical cavity having two substantially opposed reflective surfaces. At least one nanowire is operatively disposed in the optical cavity. A plurality of metal nanoparticles is established on the at least one nanowire.
    Type: Application
    Filed: October 20, 2006
    Publication date: April 3, 2008
    Inventors: Duncan R. Stewart, Amir A. Yasseri, R. Stanley Williams, Theodore I. Kamins
  • Publication number: 20070254169
    Abstract: Structures including a substrate having a nano-patterned surface, and a self-assembled monolayer of an organic material on the nano-patterned surface are provided. The self-assembled monolayer is ordered with respect to features of the nano-patterned surface. Methods of making the structures and filament switching devices including a self-assembled monolayer are also provided.
    Type: Application
    Filed: April 28, 2006
    Publication date: November 1, 2007
    Inventors: Theodore Kamins, Douglas Ohlberg, Amir Yasseri
  • Publication number: 20070212897
    Abstract: This invention provides a new procedure for attaching molecules to semiconductor surfaces, in particular silicon. The molecules, which include, but are not limited to porphyrins and ferrocenes, have been previously shown to be attractive candidates for molecular-based information storage. The new attachment procedure is simple, can be completed in short times, requires minimal amounts of material, is compatible with diverse molecular functional groups, and in some instances affords unprecedented attachment motifs. These features greatly enhance the integration of the molecular materials into the processing steps that are needed to create hybrid molecular/semiconductor information storage devices.
    Type: Application
    Filed: March 19, 2007
    Publication date: September 13, 2007
    Applicants: The Regents of the University of California, North Carolina State University
    Inventors: David Bocian, Jonathan Lindsey, Zhiming Liu, Amir Yasseri, Veena Misra, Qian Zhao, Qiliang Li, Shyam Surthi, Robert Loewe
  • Patent number: 7230268
    Abstract: This invention provides a new procedure for attaching molecules to semiconductor surfaces, in particular silicon. The molecules, which include, but are not limited to porphyrins and ferrocenes, have been previously shown to be attractive candidates for molecular-based information storage. The new attachment procedure is simple, can be completed in short times, requires minimal amounts of material, is compatible with diverse molecular functional groups, and in some instances affords unprecedented attachment motifs. These features greatly enhance the integration of the molecular materials into the processing steps that are needed to create hybrid molecular/semiconductor information storage devices.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: June 12, 2007
    Assignees: The Regents of the University of California, The North Carolina State University
    Inventors: David F Bocian, Jonathan S Lindsey, Zhiming Liu, Amir A Yasseri, Robert S Loewe
  • Patent number: 7223628
    Abstract: This invention provides a new procedure for attaching molecules to semiconductor surfaces, in particular silicon. The molecules, which include, but are not limited to porphyrins and ferrocenes, have been previously shown to be attractive candidates for molecular-based information storage. The new attachment procedure is simple, can be completed in short times, requires minimal amounts of material, is compatible with diverse molecular functional groups, and in some instances affords unprecedented attachment motifs. These features greatly enhance the integration of the molecular materials into the processing steps that are needed to create hybrid molecular/semiconductor information storage devices.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: May 29, 2007
    Assignee: The Regents of the University of California
    Inventors: David F. Bocian, Jonathan Lindsey, Zhiming Liu, Amir A. Yasseri, Veen Misra, Qian Zhao, Qiliang Li, Shyam Surthi, Robert S. Loewe
  • Patent number: 7074519
    Abstract: This invention provides a new design and fabrication for a three-dimensional crossbar architecture embedding a sub-micron or nanometer sized hole (called a molehole) in each cross-region. Each molehole is an electrochemical cell consisting of two or more sectional surfaces separated by a non-conductor (e.g. a dialectric layer and solid electrolyte). When used in electrochemical molecular memory device (EMMD), the architecture provides unique features such as a nano-scale electroactive surface, no interaction between memory elements, and easier miniaturization and integration.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: July 11, 2006
    Assignee: The Regents of the University of California
    Inventors: Werner G. Kuhr, David F. Bocian, Zhiming Liu, Amir Yasseri
  • Publication number: 20060081950
    Abstract: This invention provides a new design and fabrication for a three-dimensional crossbar architecture embedding a sub-micron or nanometer sized hole (called a molehole) in each cross-region. Each molehole is an electrochemical cell consisting of two or more sectional surfaces separated by a non-conductor (e.g., a dialectric layer and solid electrolyte). When used in electrochemical molecular memory device (EMMD), the architecture provides unique features such as a nano-scale electroactive surface, no interaction between memory elements, and easier miniaturization and integration.
    Type: Application
    Filed: April 22, 2005
    Publication date: April 20, 2006
    Inventors: Werner Kuhr, David Bocian, Zhiming Liu, Amir Yasseri
  • Publication number: 20050217559
    Abstract: This invention provides a new procedure for attaching molecules to semiconductor surfaces, in particular silicon. The molecules, which include, but are not limited to porphyrins and ferrocenes, have been previously shown to be attractive candidates for molecular-based information storage. The new attachment procedure is simple, can be completed in short times, requires minimal amounts of material, is compatible with diverse molecular functional groups, and in some instances affords unprecedented attachment motifs. These features greatly enhance the integration of the molecular materials into the processing steps that are needed to create hybrid molecular/semiconductor information storage devices.
    Type: Application
    Filed: May 26, 2005
    Publication date: October 6, 2005
    Inventors: David Bocian, Jonathan Lindsey, Zhiming Liu, Amir Yasseri, Robert Loewe