Patents by Inventor Amirhossein JOUYAEIAN

Amirhossein JOUYAEIAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240085217
    Abstract: The described techniques address issues associated with hybrid current or magnetic field sensors used to detect both low- and high-frequency magnetic field components. The hybrid sensor implements a DC component rejection path in the high-frequency magnetic field component path. Both digital and analog implementations are provided, each functioning to generate a DC component cancellation signal to at least partially cancel a DC component of a current signal generated via the high-frequency magnetic field component path. The hybrid sensor provides a high-bandwidth, high-accuracy, and low DC offset hybrid current solution that also eliminates the need for DC decoupling capacitors in the high-frequency path. A modification is also described for implementing a Sigma-Delta (??) quantization noise reduction path to reduce the quantization noise and to improve accuracy.
    Type: Application
    Filed: November 27, 2023
    Publication date: March 14, 2024
    Inventors: Mario Motz, Amirhossein Jouyaeian, Kofi Makinwa
  • Patent number: 11828625
    Abstract: The described techniques address issues associated with hybrid current or magnetic field sensors used to detect both low- and high-frequency magnetic field components. The hybrid sensor implements a DC component rejection path in the high-frequency magnetic field component path. Both digital and analog implementations are provided, each functioning to generate a DC component cancellation signal to at least partially cancel a DC component of a current signal generated via the high-frequency magnetic field component path. The hybrid sensor provides a high-bandwidth, high-accuracy, and low DC offset hybrid current solution that also eliminates the need for DC decoupling capacitors in the high-frequency path. A modification is also described for implementing a Sigma-Delta (??) quantization noise reduction path to reduce the quantization noise and to improve accuracy.
    Type: Grant
    Filed: April 5, 2022
    Date of Patent: November 28, 2023
    Assignee: Infineon Technologies AG
    Inventors: Mario Motz, Amirhossein Jouyaeian, Kofi Makinwa
  • Publication number: 20230314176
    Abstract: The described techniques address issues associated with hybrid current or magnetic field sensors used to detect both low- and high-frequency magnetic field components. The hybrid sensor implements a DC component rejection path in the high-frequency magnetic field component path. Both digital and analog implementations are provided, each functioning to generate a DC component cancellation signal to at least partially cancel a DC component of a current signal generated via the high-frequency magnetic field component path. The hybrid sensor provides a high-bandwidth, high-accuracy, and low DC offset hybrid current solution that also eliminates the need for DC decoupling capacitors in the high-frequency path. A modification is also described for implementing a Sigma-Delta (??) quantization noise reduction path to reduce the quantization noise and to improve accuracy.
    Type: Application
    Filed: April 5, 2022
    Publication date: October 5, 2023
    Inventors: Mario Motz, Amirhossein Jouyaeian, Kofi Makinwa
  • Patent number: 11668767
    Abstract: The present disclosure relates to a magnetic field sensor circuit including at least one coil for measuring a magnetic field, a first stage amplifier circuit coupled to the coil and having a first transfer function with a pole at a first frequency, and a second stage amplifier circuit coupled to an output of the first stage amplifier circuit and having a second transfer function with a zero at the first frequency. In some embodiments, a temperature dependent frequency drift of the pole of the first transfer function corresponds to a temperature dependent frequency drift of the zero of the second transfer function.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: June 6, 2023
    Assignee: Infineon Technologies AG
    Inventors: Mario Motz, Qinwen Fan, Amirhossein Jouyaeian, Kofi Makinwa
  • Publication number: 20220244322
    Abstract: The present disclosure relates to a magnetic field sensor circuit including at least one coil for measuring a magnetic field, a first stage amplifier circuit coupled to the coil and having a first transfer function with a pole at a first frequency, and a second stage amplifier circuit coupled to an output of the first stage amplifier circuit and having a second transfer function with a zero at the first frequency. In some embodiments, a temperature dependent frequency drift of the pole of the first transfer function corresponds to a temperature dependent frequency drift of the zero of the second transfer function.
    Type: Application
    Filed: January 28, 2022
    Publication date: August 4, 2022
    Applicant: Infineon Technologies AG
    Inventors: Mario MOTZ, Qinwen FAN, Amirhossein JOUYAEIAN, Kofi MAKINWA