Patents by Inventor Amit Gradstein

Amit Gradstein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220326949
    Abstract: Disclosed embodiments relate to systems and methods for performing 16-bit floating-point vector dot product instructions. In one example, a processor includes fetch circuitry to fetch an instruction having fields to specify an opcode and locations of first source, second source, and destination vectors, the opcode to indicate execution circuitry is to multiply N pairs of 16-bit floating-point formatted elements of the specified first and second sources, and accumulate the resulting products with previous contents of a corresponding single-precision element of the specified destination, decode circuitry to decode the fetched instruction, and execution circuitry to respond to the decoded instruction as specified by the opcode.
    Type: Application
    Filed: June 21, 2022
    Publication date: October 13, 2022
    Inventors: Alexander F. HEINECKE, Robert VALENTINE, Mark J. CHARNEY, Raanan SADE, Menachem ADELMAN, Zeev SPERBER, Amit GRADSTEIN, Simon RUBANOVICH
  • Publication number: 20220308873
    Abstract: Systems, methods, and apparatuses relating to interleaving data values. An embodiment includes decoding circuitry to decode a single instruction, the instruction having one or more fields to specify an opcode, one or more fields to specify a location of a first source operand, one or more fields to specify a location of a second source operand, one or more fields to specify a location of a destination operand, and one or more fields to specify an index value to be used to index a row in the first source operand, wherein the opcode is to indicate execution circuitry is to downconvert data elements of the indexed row of the first source operand, interleave the downconverted elements with data elements of the second source operand, and store the interleaved elements in the destination operand; and execution circuitry to execute the decoded instruction according to the opcode.
    Type: Application
    Filed: March 27, 2021
    Publication date: September 29, 2022
    Inventors: Menachem ADELMAN, Robert VALENTINE, Amit GRADSTEIN, Daniel TOWNER, Mark CHARNEY
  • Patent number: 11455167
    Abstract: Disclosed embodiments relate to efficient complex vector multiplication. In one example, an apparatus includes execution circuitry, responsive to an instruction having fields to specify multiplier, multiplicand, and summand complex vectors, to perform two operations: first, to generate a double-even multiplicand by duplicating even elements of the specified multiplicand, and to generate a temporary vector using a fused multiply-add (FMA) circuit having A, B, and C inputs set to the specified multiplier, the double-even multiplicand, and the specified summand, respectively, and second, to generate a double-odd multiplicand by duplicating odd elements of the specified multiplicand, to generate a swapped multiplier by swapping even and odd elements of the specified multiplier, and to generate a result using a second FMA circuit having its even product negated, and having A, B, and C inputs set to the swapped multiplier, the double-odd multiplicand, and the temporary vector, respectively.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: September 27, 2022
    Assignee: Intel Coporation
    Inventors: Raanan Sade, Thierry Pons, Amit Gradstein, Zeev Sperber, Mark J. Charney, Robert Valentine, Eyal Oz-Sinay
  • Patent number: 11403071
    Abstract: Disclosed embodiments relate to systems and methods for performing instructions to transpose rectangular tiles. In one example, a processor includes fetch circuitry to fetch an instruction having fields to specify an opcode and locations of first destination, second destination, first source, and second source matrices, the specified opcode to cause the processor to process each of the specified source and destination matrices as a rectangular matrix, decode circuitry to decode the fetched rectangular matrix transpose instruction, and execution circuitry to respond to the decoded rectangular matrix transpose instruction by transposing each row of elements of the specified first source matrix into a corresponding column of the specified first destination matrix and transposing each row of elements of the specified second source matrix into a corresponding column of the specified second destination matrix.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: August 2, 2022
    Assignee: Intel Corporation
    Inventors: Raanan Sade, Robert Valentine, Mark J. Charney, Simon Rubanovich, Amit Gradstein, Zeev Sperber, Bret Toll, Jesus Corbal, Christopher J. Hughes, Alexander F. Heinecke, Elmoustapha Ould-Ahmed-Vall
  • Publication number: 20220206743
    Abstract: Techniques for converting FP16 to BF8 using bias are described.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Inventors: Alexander Heinecke, Naveen Mellempudi, Robert Valentine, Mark Charney, Christopher Hughes, Evangelos Georganas, Zeev Sperber, Amit Gradstein, Simon Rubanovich
  • Publication number: 20220206805
    Abstract: Techniques for converting FP16 data elements to BF8 data elements using a single instruction are described. An exemplary apparatus includes decoder circuitry to decode a single instruction, the single instruction to include a one or more fields to identify a source operand, one or more fields to identify a destination operand, and one or more fields for an opcode, the opcode to indicate that execution circuitry is to convert packed half-precision floating-point data from the identified source to packed bfloat8 data and store the packed bfloat8 data into corresponding data element positions of the identified destination operand; and execution circuitry to execute the decoded instruction according to the opcode to convert packed half-precision floating-point data from the identified source to packed bfloat8 data and store the packed bfloat8 data into corresponding data element positions.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Inventors: Alexander Heinecke, Naveen Mellempudi, Robert Valentine, Mark Charney, Christopher Hughes, Evangelos Georganas, Zeev Sperber, Amit Gradstein, Simon Rubanovich
  • Publication number: 20220206801
    Abstract: Systems, methods, and apparatuses relating to 8-bit floating-point matrix dot product instructions are described.
    Type: Application
    Filed: December 26, 2020
    Publication date: June 30, 2022
    Applicant: Intel Corporation
    Inventors: Naveen Mellempudi, Alexander F. Heinecke, Robert Valentine, Mark J. Charney, Christopher J. Hughes, Evangelos Georganas, Zeev Sperber, Amit Gradstein, Simon Rubanovich
  • Publication number: 20220207107
    Abstract: An apparatus and method for complex matrix multiplication. For example, one embodiment of a processor comprises: a decoder to decode a first complex matrix multiplication instruction; execution circuitry to execute the first complex matrix multiplication instruction, the execution circuitry comprising parallel multiplication circuitry to multiply real values from the first plurality of real and imaginary values with corresponding real values from the second plurality of real and imaginary values to generate a first plurality of real products, to multiply imaginary values from the first plurality of real and imaginary values with corresponding imaginary values from the second plurality of real and imaginary values to generate a second plurality of real products; and addition/subtraction circuitry to subtract each real product in the second plurality of real products from a corresponding real product in the first plurality of real products to produce a corresponding real value in the result matrix.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 30, 2022
    Inventors: Menachem ADELMAN, Robert VALENTINE, Daniel TOWNER, Amit GRADSTEIN, Mark Jay CHARNEY
  • Patent number: 11372643
    Abstract: Disclosed embodiments relate to systems and methods for performing instructions to convert to 16-bit floating-point format. In one example, a processor includes fetch circuitry to fetch an instruction having fields to specify an opcode and locations of a first source vector comprising N single-precision elements, and a destination vector comprising at least N 16-bit floating-point elements, the opcode to indicate execution circuitry is to convert each of the elements of the specified source vector to 16-bit floating-point, the conversion to include truncation and rounding, as necessary, and to store each converted element into a corresponding location of the specified destination vector, decode circuitry to decode the fetched instruction, and execution circuitry to respond to the decoded instruction as specified by the opcode.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: June 28, 2022
    Assignee: Intel Corporation
    Inventors: Alexander F. Heinecke, Robert Valentine, Mark J. Charney, Raanan Sade, Menachem Adelman, Zeev Sperber, Amit Gradstein, Simon Rubanovich
  • Publication number: 20220197975
    Abstract: An apparatus and method for complex matrix conjugation and multiplication.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Inventors: Menachem ADELMAN, Robert VALENTINE, Daniel TOWNER, Amit GRADSTEIN, Mark Jay CHARNEY
  • Publication number: 20220197601
    Abstract: An apparatus and method for complex matrix transpose and multiply.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Inventors: Menachem ADELMAN, Robert VALENTINE, Daniel TOWNER, Amit GRADSTEIN, Mark Jay CHARNEY
  • Publication number: 20220197654
    Abstract: An apparatus and method for complex matrix conjugation.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Inventors: Menachem ADELMAN, Robert VALENTINE, Daniel TOWNER, Amit GRADSTEIN, Mark Jay CHARNEY
  • Patent number: 11366663
    Abstract: Disclosed embodiments relate to systems and methods for performing 16-bit floating-point vector dot product instructions. In one example, a processor includes fetch circuitry to fetch an instruction having fields to specify an opcode and locations of first source, second source, and destination vectors, the opcode to indicate execution circuitry is to multiply N pairs of 16-bit floating-point formatted elements of the specified first and second sources, and accumulate the resulting products with previous contents of a corresponding single-precision element of the specified destination, decode circuitry to decode the fetched instruction, and execution circuitry to respond to the decoded instruction as specified by the opcode.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: June 21, 2022
    Assignee: Intel Corporation
    Inventors: Alexander F. Heinecke, Robert Valentine, Mark J. Charney, Raanan Sade, Menachem Adelman, Zeev Sperber, Amit Gradstein, Simon Rubanovich
  • Publication number: 20220188114
    Abstract: Systems, methods, and apparatuses relating to performing hashing operations on packed data elements are described.
    Type: Application
    Filed: March 7, 2022
    Publication date: June 16, 2022
    Inventors: Regev Shemy, Zeev Sperber, Wajdi Feghali, Vinodh Gopal, Amit Gradstein, Simon Rubanovich, Sean Gulley, Ilya Albrekht, Jacob Doweck, Jose Yallouz, Ittai Anati
  • Patent number: 11354124
    Abstract: An apparatus is described having instruction execution logic circuitry to execute first, second, third and fourth instruction. Both the first instruction and the second instruction insert a first group of input vector elements to one of multiple first non overlapping sections of respective first and second resultant vectors. The first group has a first bit width. Each of the multiple first non overlapping sections have a same bit width as the first group. Both the third instruction and the fourth instruction insert a second group of input vector elements to one of multiple second non overlapping sections of respective third and fourth resultant vectors. The second group has a second bit width that is larger than said first bit width. Each of the multiple second non overlapping sections have a same bit width as the second group.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: June 7, 2022
    Assignee: Intel Corporation
    Inventors: Elmoustapha Ould-Ahmed-Vall, Robert Valentine, Jesus Corbal, Bret L. Toll, Mark J. Charney, Zeev Sperber, Amit Gradstein
  • Patent number: 11347502
    Abstract: An apparatus is described having instruction execution logic circuitry to execute first, second, third and fourth instruction. Both the first instruction and the second instruction insert a first group of input vector elements to one of multiple first non overlapping sections of respective first and second resultant vectors. The first group has a first bit width. Each of the multiple first non overlapping sections have a same bit width as the first group. Both the third instruction and the fourth instruction insert a second group of input vector elements to one of multiple second non overlapping sections of respective third and fourth resultant vectors. The second group has a second bit width that is larger than said first bit width. Each of the multiple second non overlapping sections have a same bit width as the second group.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: May 31, 2022
    Assignee: Intel Corporation
    Inventors: Elmoustapha Ould-Ahmed-Vall, Robert Valentine, Jesus Corbal, Bret L. Toll, Mark J. Charney, Zeev Sperber, Amit Gradstein
  • Publication number: 20220147356
    Abstract: Systems, methods, and apparatuses relating to performing hashing operations on packed data elements are described.
    Type: Application
    Filed: November 29, 2021
    Publication date: May 12, 2022
    Inventors: Regev Shemy, Zeev Sperber, Wajdi Feghali, Vinodh Gopal, Amit Gradstein, Simon Rubanovich, Sean Gulley, Ilya Albrekht, Jacob Doweck, Jose Yallouz, Ittai Anati
  • Publication number: 20220100507
    Abstract: Systems, methods, and apparatuses relating to instructions to convert 16-bit floating-point formats are described. In one embodiment, a processor includes fetch circuitry to fetch a single instruction having fields to specify an opcode and locations of a source vector comprising N plurality of 16-bit half-precision floating-point elements, and a destination vector to store N plurality of 16-bit bfloat floating-point elements, the opcode to indicate execution circuitry is to convert each of the elements of the source vector from 16-bit half-precision floating-point format to 16-bit bfloat floating-point format and store each converted element into a corresponding location of the destination vector, decode circuitry to decode the fetched single instruction into a decoded single instruction, and the execution circuitry to respond to the decoded single instruction as specified by the opcode.
    Type: Application
    Filed: December 24, 2020
    Publication date: March 31, 2022
    Inventors: ALEXANDER F. HEINECKE, ROBERT VALENTINE, MARK J. CHARNEY, MENACHEM ADELMAN, CHRISTOPHER J. HUGHES, EVANGELOS GEORGANAS, ZEEV SPERBER, AMIT GRADSTEIN, SIMON RUBANOVICH
  • Publication number: 20220100502
    Abstract: Systems, methods, and apparatuses relating to 16-bit floating-point matrix dot product instructions are described.
    Type: Application
    Filed: December 24, 2020
    Publication date: March 31, 2022
    Inventors: ALEXANDER F. HEINECKE, ROBERT VALENTINE, MARK J. CHARNEY, MENACHEM ADELMAN, CHRISTOPHER J. HUGHES, EVANGELOS GEORGANAS, ZEEV SPERBER, AMIT GRADSTEIN, SIMON RUBANOVICH
  • Publication number: 20220091848
    Abstract: Embodiments detailed herein relate to systems and methods to load a tile register pair. In one example, a processor includes: decode circuitry to decode a load matrix pair instruction having fields for an opcode and source and destination identifiers to identify source and destination matrices, respectively, each matrix having a PAIR parameter equal to TRUE; and execution circuitry to execute the decoded load matrix pair instruction to load every element of left and right tiles of the identified destination matrix from corresponding element positions of left and right tiles of the identified source matrix, respectively, wherein the executing operates on one row of the identified destination matrix at a time, starting with the first row.
    Type: Application
    Filed: August 10, 2021
    Publication date: March 24, 2022
    Inventors: Raanan Sade, Simon Rubanovich, Amit Gradstein, Zeev Sperber, Alexander Heinecke, Robert Valentine, Mark J. Charney, Bret Toll, Jesus Corbal, Elmoustapha Ould-Ahmed-Vall, Menachem Adelman