Patents by Inventor Amit K. Naskar

Amit K. Naskar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10407802
    Abstract: A method of producing carbon fibers includes the step of providing polyacrylonitrile precursor polymer fiber filaments. The polyacrylonitrile precursor filaments include from 87-97 mole % acrylonitrile, and less than 0.5 mole % of accelerant functional groups. The filaments are no more than 3 deniers per filament. The polyacrylonitrile precursor fiber filaments can be arranged into tows of at least 150,000 deniers per inch width. The arranged polyacrylonitrile precursor fiber tows are stabilized by heating the tows in at least one oxidation zone containing oxygen gas and maintained at a first temperature T1 while stretching the tows at least 10% to yield a stabilized precursor fiber tow. The stabilized precursor fiber tows are carbonized by passing the stabilized precursor fiber tows through a carbonization zone. Carbon fibers produced by the process are also disclosed.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: September 10, 2019
    Assignee: UT-Battelle LLC
    Inventors: Connie D. Jackson, Amit K. Naskar
  • Publication number: 20190256709
    Abstract: A composition comprising lignin compounds possessing 8-30 (or 5-15 or 8-12) phenyl rings interconnected by ether and alkylene linkages and containing hydroxy and/or methoxy groups attached to said phenyl rings, wherein said composition possesses a glass transition temperature of 80-100° C. (or 95-98° C.) and a degree of substitution (DS) of carboxylic acid groups per phenyl ring of at least 0.5 and a DS of methoxy groups per phenyl ring of no more than 1.2, 1.1, or 1.0, wherein at least 90 wt % of said lignin compounds has a molecular weight within a range of 500-5000 g/mol, 1500-3000 g/mol, or 2000-2500 g/mol and/or wherein the molecular weight distribution of the lignin compounds is characterized by a polydispersity index of 1.0-1.5, 1.0-1.4, or 1.0-1.3, and wherein other lignin compounds not possessing the above characteristics are not present. Methods for producing the lignin extract and lignin copolymers and blends produced therefrom are also described.
    Type: Application
    Filed: February 15, 2019
    Publication date: August 22, 2019
    Inventors: Amit K. Naskar, Mengmeng Cui
  • Publication number: 20190256672
    Abstract: A carbon fiber composite material comprising: (i) a carbon fiber having an outer surface, a thickness of at least 1 micron, and an aspect ratio of at least 1000; (ii) a sizing agent coated on the outer surface of the carbon fiber, wherein the sizing agent has a thickness of up to 200 nm; and (iii) nanoparticles having a size in at least one dimension of up to 100 nm embedded within the sizing agent, wherein the nanoparticles have a metal carbide, metal oxide, metal nitride, and/or metal boride composition. A method for producing the fiber composite material comprises: (a) continuously feeding and coating a continuous carbon fiber with a liquid containing a solvent, sizing agent, and nanoparticles in a continuous feed-through process to result in said sizing agent and nanoparticles coating the surface of the continuous carbon fiber; and (b) removing the solvent from the coated fiber.
    Type: Application
    Filed: February 20, 2019
    Publication date: August 22, 2019
    Inventors: Christopher C. Bowland, Amit K. Naskar
  • Publication number: 20190260026
    Abstract: A method of recovering carbon black includes the step of providing a carbonaceous source material containing carbon black. The carbonaceous source material is contacted with a sulfonation bath to produce a sulfonated material. The sulfonated material is pyrolyzed to produce a carbon black containing product comprising a glassy carbon matrix phase having carbon black dispersed therein. The pyrolysis can be conducted at a temperature from 1100° C. to 1490° C. A method of making a battery electrode and a lithium ion or sodium ion battery is also disclosed.
    Type: Application
    Filed: May 6, 2019
    Publication date: August 22, 2019
    Inventors: Amit K. Naskar, Mariappan Parans Paranthaman
  • Publication number: 20190225809
    Abstract: A solid polymer blend material comprising: (i) a lignin-acrylonitrile component containing a homogeneous blend of a lignin component and an acrylonitrile-containing rubber component; and (ii) a styrene-containing thermoplastic component that is non-elastomeric; wherein components (i) and (ii) are homogeneously dispersed in the polymer blend material. Methods for producing the blend material are also described. Methods for producing objects made of the blend material by melt extrusion are also described, comprising: (a) melt blending components (i) and (ii) to form a polymer blend in which components (i) and (ii) are homogeneously blended, wherein the polymer blend exhibits a melt viscosity of no more than 2000 Pa·s at a shear rate of 100-1000 s?1 and when heated to a temperature of no more than 240° C.; and (b) forming an object made of said polymer blend material.
    Type: Application
    Filed: January 25, 2019
    Publication date: July 25, 2019
    Inventors: Amit K. Naskar, Ngoc A. Nguyen
  • Publication number: 20190225808
    Abstract: A solid polymer blend material comprising: (i) lignin; and (ii) a polyamide having a melting point of no more than 240° C. and which is below the decomposition temperature of the lignin; wherein said lignin is homogeneously dispersed in said polyamide. Methods for producing the blend material are also described. Methods for producing objects made of the blend material by melt extrusion are also described, comprising: (a) melt blending components (i) and (ii) to form a polymer blend in which components (i) and (ii) are homogeneously blended, wherein the polymer blend exhibits a melt viscosity of no more than 2000 Pa·s at a shear rate of 100-1000 s?1 and when heated to a temperature of no more than 240° C.; and; (b) forming an object made of said polymer blend material.
    Type: Application
    Filed: January 25, 2019
    Publication date: July 25, 2019
    Inventors: Amit K. Naskar, Ngoc A. Nguyen
  • Publication number: 20190225513
    Abstract: A capacitive deionization system includes first and second electrodes comprising tire derived carbon particles obtained from a carbonaceous waste-tire source material containing carbon black. A conductive polymer coating on the carbon particles forms coated carbon particles. The first electrode and the second electrode define a flow channel there between, having a first opening for conducting saline solution into the flow channel and a second opening for conducting treated saline solution from the flow channel. A first current collector is provided for the first electrode and a second current collector is provided for the second electrode. An electrical connection between the first and second electrodes. A method of making a system for the capacitive deionization of a salt from a liquid, and a method for the capacitive desalination of a saline solution are also disclosed.
    Type: Application
    Filed: January 24, 2019
    Publication date: July 25, 2019
    Inventors: Mariappan Paranthaman, Amit K. Naskar, Constantinos Tsouris, Marko Robert Ivancevic
  • Patent number: 10355268
    Abstract: A carbon-metal oxide composite material comprising: (i) carbon-carbon composite particles in which an amorphous carbon black core is bonded to crystalline graphitic carbon shells; and (ii) a metal oxide material bonded with said carbon-carbon composite particles, wherein said metal oxide material is included in an amount of at least about 10 wt. % by weight of said carbon-carbon composite particles and metal oxide material. Alkali-ion batteries containing the above-described composite as anode are also described. Methods for producing the above-described composite are also described. The method can include, for example, subjecting pulverized rubber tire waste to a sulfonation process and pyrolyzing the sulfonated rubber to produce the carbon-carbon composite particles, as described above, followed by admixing and compounding a metal oxide material with the carbon-carbon composite particles.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: July 16, 2019
    Assignees: UT-Battelle, LLC, University of Tennesse Research Foundation
    Inventors: Yunchao Li, Mariappan Parans Paranthaman, Amit K. Naskar, Kokouvi M. Akato
  • Patent number: 10320000
    Abstract: A method of recovering carbon black includes the step of providing a carbonaceous source material containing carbon black. The carbonaceous source material is contacted with a sulfonation bath to produce a sulfonated material. The sulfonated material is pyrolyzed to produce a carbon black containing product comprising a glassy carbon matrix phase having carbon black dispersed therein. The pyrolysis can be conducted at a temperature from 1100° C. to 1490° C. A method of making a battery electrode and a lithium ion or sodium ion battery is also disclosed.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: June 11, 2019
    Assignee: UT-BATTELLE, LLC
    Inventors: Amit K. Naskar, Mariappan Parans Paranthaman
  • Publication number: 20180371253
    Abstract: An object comprising: a blend of (i) a phenol-containing polymer and (ii) a nitrile butadiene rubber; wherein the phenol-containing polymer is present in an amount of at least 5 wt % and up to about 95 wt % by total weight of components (i) and (ii). The object may further contain an electrically conducting component dispersed within the blend or on a surface of the blend. Also described is a method of thermal-activated reversible mechanical deformation of the object by (i) deforming the object at a first temperature, which is at or above the glass transition temperature of the object, and applying a stress on the object; (ii) fixing the deformed state by cooling the object to a second temperature of no more than 0° C. while under stress, and removing the stress; and (iii) recovering the object to the original shape by raising the temperature of the object to the first temperature.
    Type: Application
    Filed: June 21, 2018
    Publication date: December 27, 2018
    Inventors: Amit K. NASKAR, Ngoc Anh NGUYEN
  • Publication number: 20180369791
    Abstract: The invention provides a catalyst and a method for making the catalyst. The catalyst comprises a porous carbon composite impregnated with a salt. The catalyst comprises a porous carbon composite impregnated with a salt.
    Type: Application
    Filed: June 25, 2018
    Publication date: December 27, 2018
    Applicants: UT-Battelle, LLC, Georgia Institute of Technology, Wake Forest University
    Inventors: Mariappan Paranthaman, Amit K. Naskar, Abdou Lachgar, Younan Xia, Zachary David Hood, Shiba Prasad Adhikari
  • Patent number: 10137617
    Abstract: A method for producing a polymer composite fiber comprised of a polymer matrix with filaments incorporated therein whose lengthwise dimensions are substantially oriented with the axial dimension of the composite fiber, the method comprising subjecting a melt comprised of a polymer matrix and filaments to an extrusion process in which the melt is extruded into a fibrous form in the absence of screw extruders and in the substantial absence of shear forces that result in breakage of the filaments, followed by cooling and solidification of the extruded melt to provide the polymer composite fiber. Integration of these polymer composite fibers with additive manufacturing technologies, particularly rapid prototyping methods, such as FFF and 3D printing, are also described. The resulting polymer composite fibers and articles made thereof are also described.
    Type: Grant
    Filed: April 17, 2015
    Date of Patent: November 27, 2018
    Assignee: UT-BATTELLE, LLC
    Inventors: Vlastimil Kunc, Chad E. Duty, Lonnie J. Love, Amit K. Naskar
  • Publication number: 20180204687
    Abstract: A method of making a supercapacitor from waste tires, includes the steps of providing rubber pieces and contacting the rubber pieces with a sulfonation bath to produce sulfonated rubber; pyrolyzing the sulfonated rubber to produce a tire-derived carbon composite comprising carbon black embedded in rubber-derived carbon matrix comprising graphitized interface portions; activating the tire-derived carbon composite by contacting the tire-derived carbon composite with a specific surface area-increasing composition to increase the specific surface area of the carbon composite to provide an activated tire-derived carbon composite; and, mixing the activated tire-derived carbon composite with a monomer and polymerizing the monomer to produce a redox-active polymer coated, activated tire-derived carbon composite. The redox-active polymer coated, activated tire-derived carbon composite can be formed into a film. An electrode and a supercapacitor are also disclosed.
    Type: Application
    Filed: March 16, 2018
    Publication date: July 19, 2018
    Applicant: DREXEL UNIVERSITY
    Inventors: Amit K. NASKAR, Mariappan Parans PARANTHAMAN, Muhammad BOOTA, Yury Gogotsi
  • Patent number: 9941058
    Abstract: A method of making a supercapacitor from waste tires, includes the steps of providing rubber pieces and contacting the rubber pieces with a sulfonation bath to produce sulfonated rubber; pyrolyzing the sulfonated rubber to produce a tire-derived carbon composite comprising carbon black embedded in rubber-derived carbon matrix comprising graphitized interface portions; activating the tire-derived carbon composite by contacting the tire-derived carbon composite with a specific surface area-increasing composition to increase the specific surface area of the carbon composite to provide an activated tire-derived carbon composite; and, mixing the activated tire-derived carbon composite with a monomer and polymerizing the monomer to produce a redox-active polymer coated, activated tire-derived carbon composite. The redox-active polymer coated, activated tire-derived carbon composite can be formed into a film. An electrode and a supercapacitor are also disclosed.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: April 10, 2018
    Assignees: UT-BATTELLE, LLC, DREXEL UNIVERSITY
    Inventors: Amit K Naskar, Mariappan Parans Paranthaman, Muhammad Boota, Yury Gogotsi
  • Patent number: 9884804
    Abstract: A method of making solid acid catalysts includes the step of sulfonating waste tire pieces in a first sulfonation step. The sulfonated waste tire pieces are pyrolyzed to produce carbon composite pieces having a pore size less than 10 nm. The carbon composite pieces are then ground to produce carbon composite powders having a size less than 50 ?m. The carbon composite particles are sulfonated in a second sulfonation step to produce sulfonated solid acid catalysts. A method of making biofuels and solid acid catalysts are also disclosed.
    Type: Grant
    Filed: May 24, 2016
    Date of Patent: February 6, 2018
    Assignees: UT-BATTELLE, LLC, UNIVERSITY OF TENNESSEE RESEARCH FOUNDATION
    Inventors: Zachary D. Hood, Shiba P. Adhikari, Marcus W. Wright, Abdessadek Lachgar, Yunchao Li, Amit K. Naskar, Mariappan Parans Paranthaman
  • Publication number: 20170342014
    Abstract: A method of making solid acid catalysts includes the step of sulfonating waste tire pieces in a first sulfonation step. The sulfonated waste tire pieces are pyrolyzed to produce carbon composite pieces having a pore size less than 10 nm. The carbon composite pieces are then ground to produce carbon composite powders having a size less than 50 ?m. The carbon composite particles are sulfonated in a second sulfonation step to produce sulfonated solid acid catalysts. A method of making biofuels and solid acid catalysts are also disclosed.
    Type: Application
    Filed: May 24, 2016
    Publication date: November 30, 2017
    Inventors: Zachary D. Hood, Shiba P. Adhikari, Marcus W. Wright, Abdessadek Lachgar, Yunchao Li, Amit K. Naskar, Mariappan Parans Paranthaman
  • Patent number: 9815985
    Abstract: A polymer blend material comprising: (i) a lignin component having a weight-average molecular weight of up to 1,000,000 g/mol; and (ii) an acrylonitrile-containing copolymer rubber component comprising acrylonitrile units in combination with diene monomer units, and having an acrylonitrile content of at least 20 mol %; wherein said lignin component is present in an amount of at least 5 wt % and up to about 95 wt % by total weight of components (i) and (ii); and said polymer blend material possesses a tensile yield stress of at least 5 MPa, or a tensile stress of at least 5 MPa at 10% elongation, or a tensile stress of at least 5 MPa at 100% elongation. Methods for producing the polymer blend, molded forms thereof, and articles thereof, are also described.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: November 14, 2017
    Assignee: UT-BATTELLE, LLC
    Inventors: Amit K. Naskar, Chau D. Tran
  • Patent number: 9725829
    Abstract: Method for the preparation of carbon fiber from fiber precursor, wherein the fiber precursor is subjected to a magnetic field of at least 3 Tesla during a carbonization process. The carbonization process is generally conducted at a temperature of at least 400° C. and less than 2200° C., wherein, in particular embodiments, the carbonization process includes a low temperature carbonization step conducted at a temperature of at least or above 400° C. or 500° C. and less than or up to 1000° C., 1100° C., or 1200° C., followed by a high temperature carbonization step conducted at a temperature of at least or above 1200° C. In particular embodiments, particularly in the case of a polyacrylonitrile (PAN) fiber precursor, the resulting carbon fiber may possess a minimum tensile strength of at least 600 ksi, a tensile modulus of at least 30 Msi, and an ultimate elongation of at least 1.5%.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 8, 2017
    Assignee: UT-BATTELLE, LLC
    Inventors: Amit K. Naskar, Soydan Ozcan, Claude C. Eberle, Mohamed Gabr Abdallah, Gail Mackiewicz Ludtka, Gerard Michael Ludtka, Felix Leonard Paulauskas, John Daniel Kennedy Rivard
  • Publication number: 20170191194
    Abstract: A method of producing carbon fibers includes the step of providing polyacrylonitrile precursor polymer fiber filaments. The polyacrylonitrile precursor filaments include from 87-97 mole % acrylonitrile, and less than 0.5 mole % of accelerant functional groups. The filaments are no more than 3 deniers per filament. The polyacrylonitrile precursor fiber filaments can be arranged into tows of at least 150,000 deniers per inch width. The arranged polyacrylonitrile precursor fiber tows are stabilized by heating the tows in at least one oxidation zone containing oxygen gas and maintained at a first temperature T1 while stretching the tows at least 10% to yield a stabilized precursor fiber tow. The stabilized precursor fiber tows are carbonized by passing the stabilized precursor fiber tows through a carbonization zone. Carbon fibers produced by the process are also disclosed.
    Type: Application
    Filed: December 30, 2016
    Publication date: July 6, 2017
    Inventors: Connie D. Jackson, Amit K. Naskar
  • Patent number: 9670598
    Abstract: A method of making indium tin oxide nanofibers includes the step of mixing indium and tin precursor compounds with a binder polymer to form a nanofiber precursor composition. The nanofiber precursor composition is co-formed with a supporting polymer to form a composite nanofiber having a precursor composition nanofiber completely surrounded by the supporting polymer composition. The supporting polymer composition is removed from the composite nanofiber to expose the precursor composition nanofiber. The precursor composition nanofiber is then heated in the presence of oxygen such as O2 to form indium tin oxide and to remove the binder polymer to form an indium tin oxide nanofiber. A method of making metal oxide nanofibers is also disclosed.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: June 6, 2017
    Assignee: UT-BATTELLE, LLC
    Inventors: Soydan Ozcan, Amit K Naskar