Patents by Inventor Amit Kumar ROY

Amit Kumar ROY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230420486
    Abstract: Exemplary methods of semiconductor processing may include providing a first precursor to a semiconductor processing chamber. A substrate may be disposed within a processing region of the semiconductor processing chamber. The first precursor may include one or more of niobium, tantalum, or titanium. The methods may include contacting the substrate with the first precursor. The contacting may form a layer of metal on the substrate. The methods may include providing a second precursor to a semiconductor processing chamber. The second precursor comprises oxygen. The methods may include contacting the layer of metal with the second precursor. The contacting may form a layer of metal oxide on the substrate. The layer of metal oxide may be one or more of niobium oxide, tantalum oxide, or titanium oxide.
    Type: Application
    Filed: June 12, 2023
    Publication date: December 28, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Geetika Bajaj, Shonal Chouksey, Amit Kumar Roy, Darshan Thakare, Seshadri Ganguli, Gopi Chandran Ramachandran, Srinivas Gandikota, Jayeeta Sen
  • Publication number: 20230416915
    Abstract: Exemplary methods of semiconductor processing may include providing a first precursor to a semiconductor processing chamber. A substrate may be disposed within a processing region of the semiconductor processing chamber. The first precursor may include a first metal. The methods may include contacting the substrate with the first precursor. The contacting may form a first portion of a metal oxide material on the substrate. The methods may include providing a second precursor to the semiconductor processing chamber. The second precursor may be an oxygen-containing precursor including an alcohol, an alkoxide, a hydroxide, an acetylacetonate, an acetate, a formate, a nitrate, a sulfate, a phosphate, a phosphide, a carbonate, an oxide, an oxynitride, a perchlorate, an oxyhalide, a peroxide, an oxalate, or a phenolate. The methods may include contacting the first portion of the metal oxide material with the second precursor. The contacting may form a metal oxide material.
    Type: Application
    Filed: June 12, 2023
    Publication date: December 28, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Geetika Bajaj, Amit Kumar Roy, Shonal Chouksey, Seshadri Ganguli, Gopi Chandran Ramachandran, Srinivas Gandikota
  • Patent number: 10358718
    Abstract: A method is described for providing a hydrophilic effect to a fluoropolymer, e.g. polytetrafluoroethylene (PTFE) material. The method comprises obtaining an at least partly hydrophobic fluoropolymer material, applying a plasma and/or ozone activation step and depositing an inorganic coating using an atomic layer deposition process. Plasma activation step and/or said atomic layer deposition process thereby comprises using process parameters determining a high interaction probability between one or more precursors for the atomic layer deposition process and the fluoropolymer material so as to obtain a coated fluoropolymer material having a contact angle with water below 30°.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: July 23, 2019
    Assignee: UNIVERSITEIT GENT
    Inventors: Christophe Detavernier, Davy Deduytsche, Amit Kumar Roy
  • Publication number: 20150345018
    Abstract: A method is described for providing a hydrophilic effect to a fluoropolymer, e.g. polytetrafluoroethylene (PTFE) material. The method comprises obtaining an at least partly hydrophobic fluoropolymer material, applying a plasma and/or ozone activation step and depositing an inorganic coating using an atomic layer deposition process. Plasma activation step and/or said atomic layer deposition process thereby comprises using process parameters determining a high interaction probability between one or more precursors for the atomic layer deposition process and the fluoropolymer material so as to obtain a coated fluoropolymer material having a contact angle with water below 30°.
    Type: Application
    Filed: January 16, 2014
    Publication date: December 3, 2015
    Inventors: Christophe DETAVERNIER, Davy DEDUYTSCHE, Amit Kumar ROY