Patents by Inventor Amit Palkar

Amit Palkar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11001656
    Abstract: A method of forming a thermoresponsive polymer. The method begins by mixing in the presence of an organic solvent to form a monomer solution. An initiator is then added to the monomer solution to form a thermoresponsive polymer. In this method, R1 and R4 can be independently selected from the group consisting of H and alkyl groups; R2 and R3 can be independently selected from the group consisting of H, alkyl, olefinic, aromatic, heterocyclic, halogen, ammonium, nitroxides, nitrates, nitrite amides, amines, esters, ethers, carboxylic acids, acyl chlorides, alcohols, nitriles, phosphates, phosphonates, sulfates, sulfonates, sulfide, sulfite, thiol, and combinations thereof; Y can be selected from the group consisting of O, N and S; R5 and R6 can be independently selected from the group consisting of alkyl, olefinic, heterocyclic, halogens, ammonium, carboxylic, amines, esters, amides and combinations thereof; and X are methylene groups from about 0 to about 20 carbons.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: May 11, 2021
    Assignee: Phillips 66 Company
    Inventors: Paula Delgado, Amit Palkar
  • Patent number: 10995164
    Abstract: A method of forming a thermoresponsive polymer. The method proceeds by mixing 2-(3-(4-methyl-6-oxo-1,6-dihydropyrimidin-2-yl)ureido)ethyl methacrylate and methacrylamide in the presence of a solvent form a monomer solution. An initiator is then added to the monomer solution to form a thermoresponsive polymer.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: May 4, 2021
    Assignee: Phillilps 66 Company
    Inventors: Paula Delgado, Amit Palkar
  • Patent number: 10208141
    Abstract: A polymer comprising
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: February 19, 2019
    Assignee: Phillips 66 Company
    Inventors: Paula Delgado, Amit Palkar
  • Publication number: 20180029905
    Abstract: A method of first introducing a thermoresponsive polymer with an upper critical solubility temperature into an aqueous solution. The temperature of the thermoresponsive polymer can be equal to or greater than the upper critical solubility temperature of the thermoresponsive polymer. The method then separates contaminants within the aqueous solution with the thermoresponsive polymer to form aggregates.
    Type: Application
    Filed: July 28, 2017
    Publication date: February 1, 2018
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Amit Palkar, Paula Delgado, Sriram Satya
  • Publication number: 20180030172
    Abstract: A method of forming a thermoresponsive polymer. The method begins by mixing in the presence of an organic solvent to form a monomer solution. An initiator is then added to the monomer solution to form a thermoresponsive polymer. In this method, R1 and R4 can be independently selected from the group consisting of H and alkyl groups; R2 and R3 can be independently selected from the group consisting of H, alkyl, olefinic, aromatic, heterocyclic, halogen, ammonium, nitroxides, nitrates, nitrite amides, amines, esters, ethers, carboxylic acids, acyl chlorides, alcohols, nitriles, phosphates, phosphonates, sulfates, sulfonates, sulfide, sulfite, thiol, and combinations thereof; Y can be selected from the group consisting of O, N and S; R5 and R6 can be independently selected from the group consisting of alkyl, olefinic, heterocyclic, halogens, ammonium, carboxylic, amines, esters, amides and combinations thereof; and X are methylene groups from about 0 to about 20 carbons.
    Type: Application
    Filed: July 28, 2017
    Publication date: February 1, 2018
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Paula Delgado, Amit Palkar
  • Publication number: 20180030171
    Abstract: A method of forming a thermoresponsive polymer. The method proceeds by mixing 2-(3-(4-methyl-6-oxo-1,6-dihydropyrimidin-2-yl)ureido)ethyl methacrylate and methacrylamide in the presence of a solvent form a monomer solution. An initiator is then added to the monomer solution to form a thermoresponsive polymer.
    Type: Application
    Filed: July 28, 2017
    Publication date: February 1, 2018
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Paula Delgado, Amit Palkar
  • Publication number: 20180030170
    Abstract: A polymer comprising
    Type: Application
    Filed: July 28, 2017
    Publication date: February 1, 2018
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Paula Delgado, Amit Palkar
  • Publication number: 20180030169
    Abstract: A polymer comprising In this polymer R1 and R4 can be independently selected from the group consisting of H and alkyl groups; R2 and R3 can be independently selected from the group consisting of H, alkyl, olefinic, aromatic, heterocyclic, halogen, ammonium, nitroxides, nitrates, nitrite amides, amines, esters, ethers, carboxylic acids, acyl chlorides, alcohols, nitriles, phosphates, phosphonates, sulfates, sulfonates, sulfide, sulfite, thiol, and combinations thereof; Y can be selected from the group consisting of O, N and S; Z can be a hydrogen bonding group that is at least triple bonded or higher and X are methylene groups.
    Type: Application
    Filed: July 28, 2017
    Publication date: February 1, 2018
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Paula Delgado, Amit Palkar
  • Patent number: 9783634
    Abstract: A method of making a fluorothieno[3,4-b]thiophene derivatives and photovoltaic polymers containing same using 3-bromothiophene-2-carboxylic acid as a starting material. This synthetic route provides an easier synthesis as well as greater yield and a purer product, which produces superior results over the prior art less pure products. The resulting materials can be used in a variety of photovoltaic applications and devices, especially solar cells.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: October 10, 2017
    Assignees: SOLARMER ENERGY, INC., PHILLIPS 66 COMPANY
    Inventors: Shuangxi Wang, Chenjun Shi, Ruby Chen, Junlian Zhang, Wei Wang, Yue Wu, Hui Huang, Amit Palkar, Ting He
  • Patent number: 9691986
    Abstract: Compositions, synthesis and applications for furan, thiophene and selenophene derivatized benzo[1,2-b:3,4-b?]dithiophene(BDT)-thienothiophene (BDT-TT) based polymers, namely, poly[(4,8-bis(5-(2-ethyhexyl)selenophen-2-yl)-benzo[1,2-b;4,5-b?]dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-3-fluorothieno[3,4-b]thiophene)-2-6-diyl (CS-15), poly[(4,8-bis(5-(2-ethyhexyl)selenophen-2-yl)-benzo[1,2-b;4,5-b?]dithiophene)-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene)-2-carboxylate-2-6-diyl (CS-16), poly[(4,8-bis(5-(2-ethyhexyl)furan-2-yl)-benzo[1,2-b;4,5-b?]dithiophene)-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene)-2-carboxylate-2-6-diyl (CS-18) and poly[(4,8-bis(5-hexylfuran-2-yl)-benzo[1,2-b;4,5-b?]dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-3-fluorothieno[3,4-b]thiophene)-2-6-diyl (CS-24) are disclosed. Further, an organic solar cell constructed of a derivatized benzo[1,2-b:3,4-b?]dithiophene(BDT)-thienothiophene (BDT-TT) based polymer is discussed.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: June 27, 2017
    Assignees: Solarmer Energy, Inc., Phillips 66 Company
    Inventors: Wei Wang, Chenjun Shi, Ruby Chen, Jun Yang, Yue Wu, Hui Huang, Kathy Woody, Joe Bullock, Amit Palkar, Ting He
  • Patent number: 9673398
    Abstract: A polymer having a monomer repeat unit comprising wherein Ar is an aryl group.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: June 6, 2017
    Assignee: Phillips 66 Company
    Inventors: Wei Wang, Jun Yang, Chenjun Shi, Christopher Daeffler, Janice Hawkins, Yue Wu, Ting He, Hui Huang, Amit Palkar, Kathy Woody, Joe Bullock
  • Patent number: 9663604
    Abstract: A polymer having two different sets of repeat units consisting essentially of: In this polymer, R1, R2, R3 and R4 can be independently selected from the group consisting of alkyl group, alkoxy group, aryl groups and combinations thereof. Also the combination of R1, R2, R3 and R4 are not all identical and n and o are greater than 1.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: May 30, 2017
    Assignee: Phillips 66 Company
    Inventors: Wei Wang, Jun Yang, Chenjun Shi, Christopher Daeffler, Janice Hawkins, Yue Wu, Ting He, Hui Huang, Amit Palkar, Kathy Woody, Joe Bullock
  • Patent number: 9527963
    Abstract: A process of dissolving 3-fluoro-4,6-dihydrothieno[3,4-b]thiophene in a solvent to create a solution. An initiator is then added to the solution to produce an initiated solution followed by adding a fluorinated chemical to the initiated solution to produce 2,3-difluoro-4,6-dihydrothieno[3,4-b]thiophene. 2,3-difluoro-4,6-dihydrothieno[3,4-b]thiophene is then oxidized with an oxidant to produce 2,3-difluorothieno[3,4-b]thiophene. A brominating step then occurs to the 2,3-difluorothieno[3,4-b]thiophene to produce 4,6-dibromo-2,3-difluorothieno[2,3-c]thiophene 4,6-dibromo-2,3-difluorothieno[2,3-c]thiophene is then debrominated and polymerized to The stoichiometric ratio of (f+g)?h and f, g and h are not equal to 0. Additionally, in this embodiment R1, R2, R3 and R4 are independently selected from the group consisting of alkyl group, alkoxy group, aryl groups and combinations thereof and where the combination of R1, R2, R3 and R4 are not all identical.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: December 27, 2016
    Assignee: Phillips 66 Company
    Inventors: Wei Wang, Jun Yang, Chenjun Shi, Christopher Daeffler, Janice Hawkins, Yue Wu, Ting He, Hui Huang, Amit Palkar, Kathy Woody, Joe Bullock
  • Patent number: 9278980
    Abstract: A method of producing a monomer wherein the method begins by dissolving 3-fluoro-4,6 dihydrothieno[3,4-b]thiophene in a solvent to create a solution. An initiator is then added to the solution to produce an initiated solution. This is followed by adding a fluorinated chemical to the initiated solution to produce 2,3-difluoro-4,6-dihydrothieno[3,4-b]thiophene. 2,3-difluoro-4,6-dihydrothieno[3,4-b]thiophene is then oxidized with an oxidant to produce 2,3-difluorothieno[3,4-b]thiophene. 2,3-difluorothieno[3,4-b]thiophene is then bromoated to produce 4,6-dibromo-2,3-difluorothieno[2,3-c]thiophene.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: March 8, 2016
    Assignee: Phillips 66 Company
    Inventors: Wei Wang, Jun Yang, Chenjun Shi, Christopher Daeffler, Janice Hawkins, Yue Wu, Ting He, Hui Huang, Amit Palkar, Kathy Woody, Joe Bullock
  • Patent number: 9214635
    Abstract: Compositions, synthesis and applications for benzene, furan, thiophene, selenophene, pyrole, pyran, pyridine, oxazole, thiazole and imidazole derivatized anthra[2,3-b:6,7-b?]dithiophene (ADT) based polymers, namely, poly{5,11-bis(5-(2-ethylhexyl)thiophen-2-yl)anthra[2,3-b:6,7-b?]dithiophene-2,8-diyl-alt-2-ethyl-1-(thieno[3,4-b]thiophen-2-yl)hexan-1-one-4,6-diyl}, poly{5,11-bis(5-(2-ethylhexyl)furan-2-yl)anthra[2,3-b:6,7-b?]dithiophene-2,8-diyl-alt-2-ethyl-1-(thieno[3,4-b]thiophen-2-yl)hexan-1-one-4,6-diyl and poly{5,11-bis(5-(2-ethylhexyl)selenophen-2-yl)anthra[2,3-b:6,7-b?]dithiophene-2,8-diyl-alt-2-ethyl-1-(thieno[3,4-b]thiophen-2-yl)hexan-1-one-4,6-diyl} are disclosed. Further, an organic solar cell constructed of a derivatized anthra[2,3-b:6,7-b?]dithiophene (ADT) based polymer is discussed.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: December 15, 2015
    Assignees: Phillips 66 Company, Solarmer Energy, Inc.
    Inventors: Chenjun Shi, Ruby Chen, Jun Yang, Christopher S. Daeffler, Janice Hawkins, Yue Wu, Wei Wang, Kathy Woody, Joe Bullock, Hui Huang, Amit Palkar, Ting He
  • Publication number: 20150344608
    Abstract: A polymer having two different sets of repeat units consisting essentially of: In this polymer, R1, R2, R3 and R4 can be independently selected from the group consisting of alkyl group, alkoxy group, aryl groups and combinations thereof. Also the combination of R1, R2, R3 and R4 are not all identical and n and o are greater than 1.
    Type: Application
    Filed: May 27, 2015
    Publication date: December 3, 2015
    Applicants: SOLARMER ENERGY, INC., PHILLIPS 66 COMPANY
    Inventors: Wei Wang, Jun Yang, Chenjun Shi, Christopher Daeffler, Janice Hawkins, Yue Wu, Ting He, Hui Huang, Amit Palkar, Kathy Woody, Joe Bullock
  • Publication number: 20150349261
    Abstract: A polymer having a monomer repeat unit comprising wherein Ar is an aryl group.
    Type: Application
    Filed: May 27, 2015
    Publication date: December 3, 2015
    Applicants: SOLARMER ENERGY, INC., PHILLIPS 66 COMPANY
    Inventors: Wei Wang, Jun Yang, Chenjun Shi, Christopher Daeffler, Janice Hawkins, Yue Wu, Ting He, Hui Huang, Amit Palkar, Kathy Woody, Joe Bullock
  • Publication number: 20150344495
    Abstract: A method of producing a monomer wherein the method begins by dissolving 3-fluoro-4,6 dihydrothieno[3,4-b]thiophene in a solvent to create a solution. An initiator is then added to the solution to produce an initiated solution. This is followed by adding a fluorinated chemical to the initiated solution to produce 2,3-difluoro-4,6-dihydrothieno[3,4-b]thiophene. 2,3-difluoro-4,6-dihydrothieno[3,4-b]thiophene is then oxidized with an oxidant to produce 2,3-difluorothieno[3,4-b]thiophene. 2,3-difluorothieno[3,4-b]thiophene is then bromoated to produce 4,6-dibromo-2,3-difluorothieno[2,3-c]thiophene.
    Type: Application
    Filed: May 27, 2015
    Publication date: December 3, 2015
    Applicants: SOLARMER ENERGY, INC., PHILLIPS 66 COMPANY
    Inventors: Wei Wang, Jun Yang, Chenjun Shi, Christopher Daeffler, Janice Hawkins, Yue Wu, Ting He, Hui Huang, Amit Palkar, Kathy Woody, Joe Bullock
  • Publication number: 20150344630
    Abstract: A process of dissolving 3-fluoro-4,6-dihydrothieno[3,4-b]thiophene in a solvent to create a solution. An initiator is then added to the solution to produce an initiated solution followed by adding a fluorinated chemical to the initiated solution to produce 2,3-difluoro-4,6-dihydrothieno[3,4-b]thiophene. 2,3-difluoro-4,6-dihydrothieno[3,4-b]thiophene is then oxidized with an oxidant to produce 2,3-difluorothieno[3,4-b]thiophene. A brominating step then occurs to the 2,3-difluorothieno[3,4-b]thiophene to produce 4,6-dibromo-2,3-difluorothieno[2,3-c]thiophene. 4,6-dibromo-2,3-difluorothieno[2,3-c]thiophene is then debrominated and polymerized to The stoichiometric ratio of (f+g)?h and f, g and h are not equal to 0. Additionally, in this embodiment R1, R2, R3 and R4 are independently selected from the group consisting of alkyl group, alkoxy group, aryl groups and combinations thereof and where the combination of R1, R2, R3 and R4 are not all identical.
    Type: Application
    Filed: May 27, 2015
    Publication date: December 3, 2015
    Applicants: SOLARMER ENERGY, INC., PHILLIPS 66 COMPANY
    Inventors: Wei Wang, Jun Yang, Chenjun Shi, Christopher Daeffler, Janice Hawkins, Yue Wu, Ting He, Hui Huang, Amit Palkar, Kathy Woody, Joe Bullock
  • Publication number: 20150210800
    Abstract: A method of making a fluorothieno[3,4-b]thiophene derivatives and photovoltaic polymers containing same using 3-bromothiophene-2-carboxylic acid as a starting material. This synthetic route provides an easier synthesis as well as greater yield and a purer product, which produces superior results over the prior art less pure products. The resulting materials can be used in a variety of photovoltaic applications and devices, especially solar cells.
    Type: Application
    Filed: March 6, 2015
    Publication date: July 30, 2015
    Applicants: Phillips 66 Company, Solarmer Energy, Inc.
    Inventors: Shuangxi Wang, Chenjun Shi, Ruby Chen, Junlian Zhang, Wei Wang, Yue Wu, Hui Huang, Amit Palkar, Ting He