Patents by Inventor Amit Paul

Amit Paul has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9196724
    Abstract: A lateral device includes a gate region connected to a drain region by a drift layer. An insulation region adjoins the drift layer between the gate region and the drain region. Permanent charges are embedded in the insulation region, sufficient to cause inversion in the insulation region.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: November 24, 2015
    Assignee: MaxPower Semiconductor Inc.
    Inventors: Mohamed N. Darwish, Amit Paul
  • Publication number: 20150295083
    Abstract: A lateral device includes a gate region connected to a drain region by a drift layer. An insulation region adjoins the drift layer between the gate region and the drain region. Permanent charges are embedded in the insulation region, sufficient to cause inversion in the insulation region.
    Type: Application
    Filed: January 20, 2015
    Publication date: October 15, 2015
    Applicant: MaxPower Semiconductor Inc.
    Inventors: Mohamed N. Darwish, Amit Paul
  • Patent number: 9159804
    Abstract: Described here are transistors and fabrication methods thereof. In one implementation, a transistor includes an n-well region implanted into a surface of a substrate, and a trench in the n-well region. The trench extends from the surface to a first depth. The trench includes a gate of conductive material in the trench, and dielectric material filling a volume of the trench not filled by the conductive material. The transistor also includes a p-type material in a first region extending from a second depth to a third depth, the second depth and the third depth being greater than the first depth. The transistor further includes a source region and a drain region.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: October 13, 2015
    Assignee: Volterra Semiconductor LLC
    Inventors: Marco A. Zuniga, Yang Lu, Badredin Fatemizadeh, Jayasimha Prasad, Amit Paul, Jun Ruan
  • Patent number: 8969158
    Abstract: A method of fabricating a vertical gate region in LDMOS transistor includes depositing a first masking layer on an n-well region implanted on a substrate, patterning the first masking layer to define an area, depositing a second masking layer over the area, etching through the second masking layer in a first portion of the area to expose the n-well region, and etching the exposed n-well region to form a first trench. The first trench, extending from a surface of the n-well region to a first depth, is filled with an oxide. The second masking layer is etched through in a second portion of the area to expose the n-well region. A second trench is formed in the n-well, the second trench extending from the surface to a second depth, less than the first depth. An asymmetric vertical gate is formed by filling the second trench with a conductive material.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: March 3, 2015
    Assignee: Volterra Semiconductor Corporation
    Inventors: Marco A. Zuniga, Yang Lu, Badredin Fatemizadeh, Jayasimha Prasad, Amit Paul, Jun Ruan
  • Patent number: 8946769
    Abstract: A lateral device includes a gate region connected to a drain region by a drift layer. An insulation region adjoins the drift layer between the gate region and the drain region. Permanent charges are embedded in the insulation region, sufficient to cause inversion in the insulation region.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: February 3, 2015
    Assignee: MaxPower Semiconductor Inc.
    Inventors: Mohamed N. Darwish, Amit Paul
  • Publication number: 20140374826
    Abstract: Described here are transistors and fabrication methods thereof. In one implementation, a transistor includes an n-well region implanted into a surface of a substrate, and a trench in the n-well region. The trench extends from the surface to a first depth. The trench includes a gate of conductive material in the trench, and dielectric material filling a volume of the trench not filled by the conductive material. The transistor also includes a p-type material in a first region extending from a second depth to a third depth, the second depth and the third depth being greater than the first depth. The transistor further includes a source region and a drain region.
    Type: Application
    Filed: September 16, 2014
    Publication date: December 25, 2014
    Inventors: Marco A. Zuniga, Yang Lu, Badredin Fatemizadeh, Jayasimha Prasad, Amit Paul, Jun Ruan
  • Patent number: 8866217
    Abstract: Described here are transistors and fabrication methods thereof. In one implementation, a transistor includes an n-well region implanted into a surface of a substrate, and a trench in the n-well region. The trench extends from the surface to a first depth. The trench includes a gate of conductive material in the trench, and dielectric material filling a volume of the trench not filled by the conductive material. The transistor also includes a p-type material in a first region extending from a second depth to a third depth, the second depth and the third depth being greater than the first depth. The transistor further includes a source region and a drain region.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: October 21, 2014
    Assignee: Volterra Semiconductor LLC
    Inventors: Marco A. Zuniga, Yang Lu, Badredin Fatemizadeh, Jayasimha Prasad, Amit Paul, Jun Ruan
  • Publication number: 20140266113
    Abstract: A voltage regulator has an input terminal and a ground terminal. The voltage regulator includes a high-side device, a low side device, and a controller. The high-side device is coupled between the input terminal and an intermediate terminal. The high-side device includes first and second transistors each coupled between the input terminal and the intermediate terminal, such that the first transistor controls a drain-source switching voltage of the second transistor. The low-side device is coupled between the intermediate terminal and the ground terminal. The controller drives the high-side and low-side devices to alternately couple the intermediate terminal to the input terminal and the ground terminal.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: Volterra Semiconductor Corporation
    Inventors: Marco A. Zuniga, Chiteh Chiang, Yang Lu, Badredin Fatemizadeh, Amit Paul, Jun Ruan, Craig Cassella
  • Publication number: 20140239390
    Abstract: A lateral device includes a gate region connected to a drain region by a drift layer. An insulation region adjoins the drift layer between the gate region and the drain region. Permanent charges are embedded in the insulation region, sufficient to cause inversion in the insulation region.
    Type: Application
    Filed: January 30, 2014
    Publication date: August 28, 2014
    Applicant: MaxPower Semiconductor, Inc.
    Inventors: Mohamed N. Darwish, Amit Paul
  • Publication number: 20140147979
    Abstract: A method of fabricating a vertical gate region in LDMOS transistor includes depositing a first masking layer on an n-well region implanted on a substrate, patterning the first masking layer to define an area, depositing a second masking layer over the area, etching through the second masking layer in a first portion of the area to expose the n-well region, and etching the exposed n-well region to form a first trench. The first trench, extending from a surface of the n-well region to a first depth, is filled with an oxide. The second masking layer is etched through in a second portion of the area to expose the n-well region. A second trench is formed in the n-well, the second trench extending from the surface to a second depth, less than the first depth. An asymmetric vertical gate is formed by filling the second trench with a conductive material.
    Type: Application
    Filed: January 28, 2014
    Publication date: May 29, 2014
    Applicant: Volterra Semiconductor Corporation
    Inventors: Marco A. Zuniga, Yang Lu, Badredin Fatemizadeh, Jayasimha Prasad, Amit Paul, Jun Ruan
  • Patent number: 8709899
    Abstract: The present application features methods of fabricating a gate region in a vertical laterally diffused metal oxide semiconductor (LDMOS) transistor. In one aspect, a method includes depositing a masking layer on an n-well region implanted on a substrate, patterning the masking layer to define an area, and forming a first trench in the area such that a length of the first trench extends from a surface of the n-well region to a first depth in the n-well region. The method also includes filling the first trench by a conductive material and depositing a layer of oxide over the area. The method further includes etching out at least a portion of the oxide layer to expose a portion of the conductive material, removing the conductive material from the exposed portion to form a second trench, and filling the second trench with an oxide to form an asymmetric gate of the transistor.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: April 29, 2014
    Assignee: Volterra Semiconductor Corporation
    Inventors: Marco A. Zuniga, Yang Lu, Badredin Fatemizadeh, Jayasimha Prasad, Amit Paul, Jun Ruan, John Xia
  • Patent number: 8704302
    Abstract: The present inventors have realized that manufacturability plays into optimization of power semiconductor devices in some surprising new ways. If the process window is too narrow, the maximum breakdown voltage will not be achieved due to doping variations and the like normally seen in device fabrication. Thus, among other teachings, the present application describes some ways to improve the process margin, for a given breakdown voltage specification, by actually reducing the maximum breakdown voltage. In one class of embodiments, this is done by introducing a vertical gradation in the density of fixed electrostatic charge, or in the background doping of the drift region, or both. Several techniques are disclosed for achieving this.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: April 22, 2014
    Assignee: MaxPower Semiconductor, Inc.
    Inventors: Amit Paul, Mohamed N. Darwish
  • Patent number: 8674403
    Abstract: A lateral device includes a gate region connected to a drain region by a drift layer. An insulation region adjoins the drift layer between the gate region and the drain region. Permanent charges are embedded in the insulation region, sufficient to cause inversion in the insulation region.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: March 18, 2014
    Assignee: MaxPower Semiconductor, Inc.
    Inventors: Mohamed N. Darwish, Amit Paul
  • Patent number: 8647950
    Abstract: A method of fabricating a vertical gate region in LDMOS transistor includes depositing a first masking layer on an n-well region implanted on a substrate, patterning the first masking layer to define an area, depositing a second masking layer over the area, etching through the second masking layer in a first portion of the area to expose the n-well region, and etching the exposed n-well region to form a first trench. The first trench, extending from a surface of the n-well region to a first depth, is filled with an oxide. The second masking layer is etched through in a second portion of the area to expose the n-well region. A second trench is formed in the n-well, the second trench extending from the surface to a second depth, less than the first depth. An asymmetric vertical gate is formed by filling the second trench with a conductive material.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: February 11, 2014
    Assignee: Volterra Semiconductor Corporation
    Inventors: Marco A. Zuniga, Yang Lu, Badredin Fatemizadeh, Jayasimha Prasad, Amit Paul, Jun Ruan
  • Patent number: 8643137
    Abstract: A short channel Lateral MOSFET (LMOS) and method are disclosed with interpenetrating drain-body protrusions (IDBP) for reducing channel-on resistance while maintaining high punch-through voltage. The LMOS includes lower device bulk layer; upper source and upper drain region both located atop lower device bulk layer; both upper source and upper drain region are in contact with an intervening upper body region atop lower device bulk layer; both upper drain and upper body region are shaped to form a drain-body interface; the drain-body interface has an IDBP structure with a surface drain protrusion lying atop a buried body protrusion while revealing a top body surface area of the upper body region; gate oxide-gate electrode bi-layer disposed atop the upper body region forming an LMOS with a short channel length defined by the horizontal length of the top body surface area delineated between the upper source region and the upper drain region.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: February 4, 2014
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Shekar Mallikarjunaswamy, Amit Paul
  • Publication number: 20130299899
    Abstract: The present inventors have realized that manufacturability plays into optimization of power semiconductor devices in some surprising new ways. If the process window is too narrow, the maximum breakdown voltage will not be achieved due to doping variations and the like normally seen in device fabrication. Thus, among other teachings, the present application describes some ways to improve the process margin, for a given breakdown voltage specification, by actually reducing the maximum breakdown voltage. In one class of embodiments, this is done by introducing a vertical gradation in the density of fixed electrostatic charge, or in the background doping of the drift region, or both. Several techniques are disclosed for achieving this.
    Type: Application
    Filed: November 6, 2012
    Publication date: November 14, 2013
    Applicant: MaxPower Semiconductor, Inc
    Inventors: Amit Paul, Mohamed N. Darwish
  • Patent number: 8562868
    Abstract: The present invention is related to ternary metal transition metal non-oxide nano-particle compositions, methods for preparing the nano-particles, and applications relating in particular to the use of said nano-particles in dispersions, electrodes and capacitors. The nano-particle compositions of the present invention can include a precursor which includes at least one material selected from the group consisting of alkoxides, carboxylates and halides of transition metals, the material including transition metal(s) selected from the group consisting of vanadium, niobium, tantalum, tungsten and molybdenum.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: October 22, 2013
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Prashant Nagesh Kumta, Amit Paul, Prashanth Hanumantha Jampani
  • Publication number: 20130115744
    Abstract: A method of fabricating a vertical gate region in LDMOS transistor includes depositing a first masking layer on an n-well region implanted on a substrate, patterning the first masking layer to define an area, depositing a second masking layer over the area, etching through the second masking layer in a first portion of the area to expose the n-well region, and etching the exposed n-well region to form a first trench. The first trench, extending from a surface of the n-well region to a first depth, is filled with an oxide. The second masking layer is etched through in a second portion of the area to expose the n-well region. A second trench is formed in the n-well, the second trench extending from the surface to a second depth, less than the first depth. An asymmetric vertical gate is formed by filling the second trench with a conductive material.
    Type: Application
    Filed: August 10, 2012
    Publication date: May 9, 2013
    Applicant: Volterra Semiconductor Corporation
    Inventors: Marco A. Zuniga, Yang Lu, Badredin Fatemizadeh, Jayasimha Prasad, Amit Paul, Jun Ruan
  • Publication number: 20130105888
    Abstract: The present application features a transistor that includes an n-well region implanted into a surface of a substrate, a gate region, and a source region, and a drain region. The source region is on a first side of the gate region and includes a p-body region in the n-well region. An n+ region and a p+ region are implanted in the p-body region such that the p+ region is below the n+ region. The drain region is on a second side of the gate region and includes an n+ region.
    Type: Application
    Filed: August 10, 2012
    Publication date: May 2, 2013
    Applicant: Volterra Semiconductor Corporation
    Inventors: Marco A. Zuniga, Yang Lu, Badredin Fatemizadeh, Jayasimha Prasad, Amit Paul, Jun Ruan
  • Publication number: 20130109143
    Abstract: The present application features methods of fabricating a gate region in a vertical laterally diffused metal oxide semiconductor (LDMOS) transistor. In one aspect, a method includes depositing a masking layer on an n-well region implanted on a substrate, patterning the masking layer to define an area, and forming a first trench in the area such that a length of the first trench extends from a surface of the n-well region to a first depth in the n-well region. The method also includes filling the first trench by a conductive material and depositing a layer of oxide over the area. The method further includes etching out at least a portion of the oxide layer to expose a portion of the conductive material, removing the conductive material from the exposed portion to form a second trench, and filling the second trench with an oxide to form an asymmetric gate of the transistor.
    Type: Application
    Filed: August 10, 2012
    Publication date: May 2, 2013
    Applicant: Volterra Semiconductor Corporation
    Inventors: Marco A. Zuniga, Yang Lu, Badredin Fatemizadeh, Jayasimha Prasad, Amit Paul, Jun Ruan, John Xia