Patents by Inventor Amit SOLOMON

Amit SOLOMON has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11870459
    Abstract: Described is a decoder suitable for use with any communication or storage system. The described decoder has a modular decoder hardware architecture capable of implementing a noise guessing process and due to its dependency only on noise, the decoder design is independent of any encoder, thus making it a universal decoder. Hence, the decoder architecture described herein is agnostic to any coding scheme.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: January 9, 2024
    Assignees: Massachusetts Institute of Technology, National University of Ireland Maynooth, Trustees of Boston University
    Inventors: Amit Solomon, Muriel Medard, Kenneth R. Duffy, Rabia Tugce Yazicigil Kirby, Vaibhav Bansal, Wei An
  • Patent number: 11838040
    Abstract: Described are concepts, systems, devices and methods that enhance decoding performance of channels subject to correlated noise. The concepts, systems, devices and methods can be used with any combination of codes, code-rates and decoding techniques. In embodiments, a continuous realization of effective noise is estimated from a lead channel by subtracting its decoded output from its received signal. This estimate is then used to improve the accuracy of decoding of an otherwise orthogonal channel that is experiencing correlated effective noise. In this approach, channels aid each other through the post-decoding provision of estimates of effective noise. In some embodiments, the lead channel is not pre-determined, but is chosen dynamically based on which of a plurality of decoders completes first, or using soft information including an estimate of effective noise that is least energetic or most likely to have occurred.
    Type: Grant
    Filed: July 22, 2022
    Date of Patent: December 5, 2023
    Assignees: Massachusetts Institute of Technology, National University of Ireland, Maynooth
    Inventors: Muriel Medard, Kenneth R. Duffy, Amit Solomon, Alejandro Cohen
  • Publication number: 20230068386
    Abstract: The apparatus of an edge computing node, a system, a method and a machine-readable medium. The apparatus includes a processor to perform rounds of federated machine learning training including: processing client reports from a plurality of clients of the edge computing network; selecting a candidate set of clients from the plurality of clients for an epoch of the federated machine learning training; causing a global model to be sent to the candidate set of clients; and performing the federated machine learning training on the candidate set of clients. The processor may perform rounds of federated machine learning training including: obtaining coded training data from each of the selected clients; and performing machine learning training on the coded training data.
    Type: Application
    Filed: December 26, 2020
    Publication date: March 2, 2023
    Applicant: Intel Corporation
    Inventors: Mustafa Riza Akdeniz, Arjun Anand, Nageen Himayat, Amir S. Avestimehr, Ravikumar Balakrishnan, Prashant Bhardwaj, Jeongsik Choi, Yang-Seok Choi, Sagar Dhakal, Brandon Gary Edwards, Saurav Prakash, Amit Solomon, Shilpa Talwar, Yair Eliyahu Yona
  • Publication number: 20220376725
    Abstract: Described are concepts, systems, devices and methods that enhance decoding performance of channels subject to correlated noise. The concepts, systems, devices and methods can be used with any combination of codes, code-rates and decoding techniques. In embodiments, a continuous realization of effective noise is estimated from a lead channel by subtracting its decoded output from its received signal. This estimate is then used to improve the accuracy of decoding of an otherwise orthogonal channel that is experiencing correlated effective noise. In this approach, channels aid each other through the post-decoding provision of estimates of effective noise. In some embodiments, the lead channel is not pre-determined, but is chosen dynamically based on which of a plurality of decoders completes first, or using soft information including an estimate of effective noise that is least energetic or most likely to have occurred.
    Type: Application
    Filed: July 22, 2022
    Publication date: November 24, 2022
    Applicants: Massachusetts Institute of Technology, National University of Ireland, Maynooth
    Inventors: Muriel MEDARD, Kenneth R. DUFFY, Amit SOLOMON, Alejandro COHEN
  • Patent number: 11431368
    Abstract: Described are concepts, systems, devices and methods that enhance decoding performance of channels subject to correlated noise. The concepts, systems, devices and methods can be used with any combination of codes, code-rates and decoding techniques. In embodiments, a continuous realization of effective noise is estimated from a lead channel by subtracting its decoded output from its received signal. This estimate is then used to improve the accuracy of decoding of an otherwise orthogonal channel that is experiencing correlated effective noise. In this approach, channels aid each other through the post-decoding provision of estimates of effective noise. In some embodiments, the lead channel is not pre-determined, but is chosen dynamically based on which of a plurality of decoders completes first, or using soft information including an estimate of effective noise that is least energetic or most likely to have occurred.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: August 30, 2022
    Assignees: Massachusetts Institute of Technology, National University of Ireland, Maynooth
    Inventors: Muriel Medard, Kenneth R. Duffy, Amit Solomon, Alejandro Cohen
  • Publication number: 20210384918
    Abstract: Described is a decoder suitable for use with any communication or storage system. The described decoder has a modular decoder hardware architecture capable of implementing a noise guessing process and due to its dependency only on noise, the decoder design is independent of any encoder, thus making it a universal decoder. Hence, the decoder architecture described herein is agnostic to any coding scheme.
    Type: Application
    Filed: April 8, 2021
    Publication date: December 9, 2021
    Inventors: Amit SOLOMON, Muriel MEDARD, Kenneth R. DUFFY, Rabia Tugce Yazicigil KIRBY, Vaibhav BANSAL, Wei AN
  • Publication number: 20210288685
    Abstract: Described are concepts, systems, devices and methods that enhance decoding performance of channels subject to correlated noise. The concepts, systems, devices and methods can be used with any combination of codes, code-rates and decoding techniques. In embodiments, a continuous realization of effective noise is estimated from a lead channel by subtracting its decoded output from its received signal. This estimate is then used to improve the accuracy of decoding of an otherwise orthogonal channel that is experiencing correlated effective noise. In this approach, channels aid each other through the post-decoding provision of estimates of effective noise. In some embodiments, the lead channel is not pre-determined, but is chosen dynamically based on which of a plurality of decoders completes first, or using soft information including an estimate of effective noise that is least energetic or most likely to have occurred.
    Type: Application
    Filed: March 16, 2021
    Publication date: September 16, 2021
    Inventors: Muriel MEDARD, Kenneth R. DUFFY, Amit SOLOMON, Alejandro COHEN