Patents by Inventor Amnon Yariv

Amnon Yariv has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10547160
    Abstract: The optical mode of a photonic device is coupled between a first region made of a semiconducting material, and a second region made of a dielectric material. Photons are generated within the first region, while the optical mode is predominantly stored within the second region. The thickness of the first region and its width are controlled to determine its effective refractive index, enabling control of the optical mode.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: January 28, 2020
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Christos T. Santis, Amnon Yariv
  • Publication number: 20190214789
    Abstract: The optical mode of a photonic device is coupled between a first region made of a semiconducting material, and a second region made of a dielectric material. Photons are generated within the first region, while the optical mode is predominantly stored within the second region. The thickness of the first region and its width are controlled to determine its effective refractive index, enabling control of the optical mode.
    Type: Application
    Filed: December 19, 2018
    Publication date: July 11, 2019
    Inventors: Christos T. Santis, Amnon Yariv
  • Patent number: 9933554
    Abstract: A laser resonator includes an active material, which amplifies light associated with an optical gain of the resonator, and passive materials disposed in proximity with the active material. The resonator oscillates over one or more optical modes, each of which corresponds to a particular spatial energy distribution and resonant frequency. Based on a characteristic of the passive materials, for the particular spatial energy distribution corresponding to at least one of the optical modes, a preponderant portion of optical energy is distributed apart from the active material. The passive materials may include a low loss material, which stores the preponderant optical energy portion distributed apart from the active material, and a buffer material disposed between the low loss material and the active material, which controls a ratio of the optical energy stored in the low loss material to a portion of the optical energy in the active material.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: April 3, 2018
    Assignees: CALIFORNIA INSTITUTE OF TECHNOLOGY, TELARIS INC.
    Inventors: Christos T. Santis, Scott T. Steger, Amnon Yariv, Naresh Satyan, George Rakuljic
  • Patent number: 9819151
    Abstract: A laser resonator includes an active material, which amplifies light associated with an optical gain of the resonator, and passive materials disposed in proximity with the active material. The resonator oscillates over one or more optical modes, each of which corresponds to a particular spatial energy distribution and resonant frequency. Based on a characteristic of the passive materials, for the particular spatial energy distribution corresponding to at least one of the optical modes, a preponderant portion of optical energy is distributed apart from the active material. The passive materials may include a low loss material, which stores the preponderant optical energy portion distributed apart from the active material, and a buffer material disposed between the low loss material and the active material, which controls a ratio of the optical energy stored in the low loss material to a portion of the optical energy in the active material.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: November 14, 2017
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Christos T Santis, Scott T Steger, Amnon Yariv
  • Patent number: 9575182
    Abstract: A detection apparatus and method for FMCW LIDAR employ signals whose frequencies are modified so that low-cost and low-speed photodetector arrays, such as CCD or CMOS cameras, can be employed for range detection. The LIDAR is designed to measure the range z to a target and includes a single mode swept frequency laser (SFL), whose optical frequency is varied with time, as a result of which, a target beam which is reflected back by the target is shifted in frequency from a reference beam by an amount that is proportional to the relative range z to the target. The reflected target beam is combined with the reference beam and detected by the photodetector array. By first modulating at least one of the target and reference beams such that the difference between the frequencies of the reflected target beam and the reference beam is reduced to a level that is within the bandwidth of the photodetector array, the need for high-speed detector arrays for full-field imaging is obviated.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: February 21, 2017
    Assignees: California Institute of Technology, Telaris Inc.
    Inventors: Naresh Satyan, Arseny Vasilyev, George Rakuljic, Amnon Yariv
  • Patent number: 9465110
    Abstract: A detection apparatus and method for FMCW LIDAR employ signals that are modified so that low-cost and low-speed photodetector arrays, such as CCD or CMOS cameras, can be employed for range detection. The LIDAR is designed to measure the range to one or more targets and includes a single mode swept frequency laser (SFL), whose optical frequency is varied with time, as a result of which, a target beam which is reflected back by the one or more targets is shifted in frequency from a reference beam by an amount that is proportional to the relative range to the one or more targets. The reflected target beam(s) is/are combined with the reference beam and detected by the photodetector array. In the case of a sparse number of targets to be detected, Compressive Sensing (CS) techniques can be employed by a processor to reduce the number of measurements necessary to determine the range of each target.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: October 11, 2016
    Assignees: TELARIS INC., CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Naresh Satyan, Arseny Vasilyev, Amnon Yariv, George Rakuljic
  • Publication number: 20160261091
    Abstract: A laser resonator includes an active material, which amplifies light associated with an optical gain of the resonator, and passive materials disposed in proximity with the active material. The resonator oscillates over one or more optical modes, each of which corresponds to a particular spatial energy distribution and resonant frequency. Based on a characteristic of the passive materials, for the particular spatial energy distribution corresponding to at least one of the optical modes, a preponderant portion of optical energy is distributed apart from the active material. The passive materials may include a low loss material, which stores the preponderant optical energy portion distributed apart from the active material, and a buffer material disposed between the low loss material and the active material, which controls a ratio of the optical energy stored in the low loss material to a portion of the optical energy in the active material.
    Type: Application
    Filed: February 5, 2016
    Publication date: September 8, 2016
    Inventors: Christos T. SANTIS, Scott T. STEGER, Amnon YARIV, Naresh SATYAN, George RAKULJIC
  • Patent number: 9341782
    Abstract: Coupled-resonator optical waveguides (CROW) can be used to control a speed of an optical signal. In particular, the coupling distance between the resonators can be adjusted to precisely control a group delay of an optical wave. Systems and methods are described to control such coupling distance in a CROW.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: May 17, 2016
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Hsi-Chun Liu, Amnon Yariv
  • Publication number: 20160047988
    Abstract: Coupled-resonator optical waveguides (CROW) can be used to control a speed of an optical signal. In particular, the coupling distance between the resonators can be adjusted to precisely control a group delay of an optical wave. Systems and methods are described to control such coupling distance in a CROW.
    Type: Application
    Filed: September 16, 2015
    Publication date: February 18, 2016
    Inventors: Hsi-Chun LIU, Amnon YARIV
  • Publication number: 20150333480
    Abstract: A laser resonator includes an active material, which amplifies light associated with an optical gain of the resonator, and passive materials disposed in proximity with the active material. The resonator oscillates over one or more optical modes, each of which corresponds to a particular spatial energy distribution and resonant frequency. Based on a characteristic of the passive materials, for the particular spatial energy distribution corresponding to at least one of the optical modes, a preponderant portion of optical energy is distributed apart from the active material. The passive materials may include a low loss material, which stores the preponderant optical energy portion distributed apart from the active material, and a buffer material disposed between the low loss material and the active material, which controls a ratio of the optical energy stored in the low loss material to a portion of the optical energy in the active material.
    Type: Application
    Filed: June 30, 2014
    Publication date: November 19, 2015
    Inventors: Christos T. SANTIS, Scott T. STEGER, Amnon YARIV
  • Patent number: 9164236
    Abstract: Coupled-resonator optical waveguides (CROW) can be used to control a speed of an optical signal. In particular, the coupling distance between the resonators can be adjusted to precisely control a group delay of an optical wave. Systems and methods are described to control such coupling distance in a CROW.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: October 20, 2015
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Hsi-Chun Liu, Amnon Yariv
  • Publication number: 20150177380
    Abstract: A detection apparatus and method for FMCW LIDAR employ signals whose frequencies are modified so that low-cost and low-speed photodetector arrays, such as CCD or CMOS cameras, can be employed for range detection. The LIDAR is designed to measure the range z to a target and includes a single mode swept frequency laser (SFL), whose optical frequency is varied with time, as a result of which, a target beam which is reflected back by the target is shifted in frequency from a reference beam by an amount that is proportional to the relative range z to the target. The reflected target beam is combined with the reference beam and detected by the photodetector array. By first modulating at least one of the target and reference beams such that the difference between the frequencies of the reflected target beam and the reference beam is reduced to a level that is within the bandwidth of the photodetector array, the need for high-speed detector arrays for full-field imaging is obviated.
    Type: Application
    Filed: December 30, 2014
    Publication date: June 25, 2015
    Applicants: California Institute of Technology, Telaris Inc.
    Inventors: Naresh Satyan, Arseny Vasilyev, George Rakuljic, Amnon Yariv
  • Patent number: 8792524
    Abstract: This invention relates to opto-electronic systems using semiconductor lasers driven by optical phase-locked loops that control the laser's optical phase and frequency. Feedback control provides a means for precise, wideband control of optical frequency and phase, augmented further by four wave mixing stages and digitally stitched independent optical waveforms for enhanced tunability.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: July 29, 2014
    Assignees: Telaris Inc., California Institute of Technology
    Inventors: George Rakuljic, Naresh Satyan, Arseny Vasilyev, Amnon Yariv
  • Publication number: 20140104593
    Abstract: A detection apparatus and method for FMCW LIDAR employ signals that are modified so that low-cost and low-speed photodetector arrays, such as CCD or CMOS cameras, can be employed for range detection. The LIDAR is designed to measure the range to one or more targets and includes a single mode swept frequency laser (SFL), whose optical frequency is varied with time, as a result of which, a target beam which is reflected back by the one or more targets is shifted in frequency from a reference beam by an amount that is proportional to the relative range to the one or more targets. The reflected target beam(s) is/are combined with the reference beam and detected by the photodetector array. In the case of a sparse number of targets to be detected, Compressive Sensing (CS) techniques can be employed by a processor to reduce the number of measurements necessary to determine the range of each target.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 17, 2014
    Applicants: TELARIS INC., CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Naresh Satyan, Arseny Vasilyev, Amnon Yariv, George Rakuljic
  • Publication number: 20140029893
    Abstract: Coupled-resonator optical waveguides (CROW) can be used to control a speed of an optical signal. In particular, the coupling distance between the resonators can be adjusted to precisely control a group delay of an optical wave. Systems and methods are described to control such coupling distance in a CROW.
    Type: Application
    Filed: April 30, 2012
    Publication date: January 30, 2014
    Inventors: Hsi-Chun Liu, Amnon Yariv
  • Patent number: 8597577
    Abstract: An optoelectronic swept-frequency semiconductor laser coupled to a microfabricated optical biomolecular sensor with integrated resonator and waveguide and methods related thereto are described. Biomolecular sensors with optical resonator microfabricated with integrated waveguide operation can be in a microfluidic flow cell.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: December 3, 2013
    Assignee: California Institute of Technology
    Inventors: Richard C. Flagan, Amnon Yariv, Jason Gamba, Naresh Satyan, Jacob Sendowski, Arseny Vasilyev
  • Publication number: 20120262721
    Abstract: This invention relates to opto-electronic systems using semiconductor lasers driven by optical phase-locked loops that control the laser's optical phase and frequency. Feedback control provides a means for precise, wideband control of optical frequency and phase, augmented further by four wave mixing stages and digitally stitched independent optical waveforms for enhanced tunability.
    Type: Application
    Filed: April 19, 2012
    Publication date: October 18, 2012
    Applicants: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: George Rakuljic, Naresh Satyan, Arseny Vasilyev, Amnon Yariv
  • Publication number: 20120156802
    Abstract: An optoelectronic swept-frequency semiconductor laser coupled to a microfabricated optical biomolecular sensor with integrated resonator and waveguide and methods related thereto are described. Biomolecular sensors with optical resonator microfabricated with integrated waveguide operation can be in a microfluidic flow cell.
    Type: Application
    Filed: February 18, 2011
    Publication date: June 21, 2012
    Inventors: Richard C. FLAGAN, Amnon YARIV, Jason GAMBA, Naresh SATYAN, Jacob SENDOWSKI, Arseny VASILYEV
  • Publication number: 20100085992
    Abstract: This invention relates to opto-electronic systems using semiconductor lasers driven by optical phase-locked loops that control the laser's optical phase and frequency. Feedback control provides a means for precise, wideband control of optical frequency and phase, augmented further by four wave mixing stages and digitally stitched independent optical waveforms for enhanced tunability.
    Type: Application
    Filed: August 13, 2009
    Publication date: April 8, 2010
    Inventors: George Rakuljic, Naresh Satyan, Arseny Vasilyev, Amnon Yariv
  • Publication number: 20080273567
    Abstract: A III-V semiconductor waveguide is coupled with a Si waveguide to form a hybrid structure. Spatial location of the optical mode (or supermode) of the hybrid structure is controlled by controlling at least one between the geometry and the refractive index of the structure, e.g., varying width of the Si waveguide. Control of such spatial location allows location of the optical mode either almost entirely in the III-V semiconductor waveguide or almost entirely in the Si waveguide, thus allowing various optical arrangements to be obtained according to the location of the optical mode and the proprieties of the waveguides.
    Type: Application
    Filed: April 26, 2008
    Publication date: November 6, 2008
    Inventors: Amnon YARIV, Xiankai SUN