Patents by Inventor Amol Inamdar

Amol Inamdar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10659075
    Abstract: Superconductor analog-to-digital converters (ADC) offer high sensitivity and large dynamic range. One approach to increasing the dynamic range further is with a subranging architecture, whereby the output of a coarse ADC is converted back to analog and subtracted from the input signal, and the residue signal fed to a fine ADC for generation of additional significant bits. This also requires a high-gain broadband linear amplifier, which is not generally available within superconductor technology. In a preferred embodiment, a distributed digital fluxon amplifier is presented, which also integrates the functions of integration, filtering, and flux subtraction. A subranging ADC design provides two ADCs connected with the fluxon amplifier and subtractor circuitry that would provide a dynamic range extension by about 30-35 dB.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: May 19, 2020
    Assignee: Hypres Inc.
    Inventors: Amol Inamdar, Deepnarayan Gupta
  • Publication number: 20200127678
    Abstract: Superconductor analog-to-digital converters (ADC) offer high sensitivity and large dynamic range. One approach to increasing the dynamic range further is with a subranging architecture, whereby the output of a coarse ADC is converted back to analog and subtracted from the input signal, and the residue signal fed to a fine ADC for generation of additional significant bits. This also requires a high-gain broadband linear amplifier, which is not generally available within superconductor technology. In a preferred embodiment, a distributed digital fluxon amplifier is presented, which also integrates the functions of integration, filtering, and flux subtraction. A subranging ADC design provides two ADCs connected with the fluxon amplifier and subtractor circuitry that would provide a dynamic range extension by about 30-35 dB.
    Type: Application
    Filed: March 8, 2019
    Publication date: April 23, 2020
    Inventors: Amol Inamdar, Deepnarayan Gupta
  • Patent number: 10630326
    Abstract: A radio frequency receiver subject to a large in-band interferor employs active cancellation with coarse and at least one fine cancellation signal, each with a respective radio frequency combiner, in order to increase the effective dynamic range of the receiver for weak signals of interest. One or both can be digitally synthesized. This is particularly applicable for co-site interference, whereby the interfering transmit signal is directly accessible. A similar system and method may also be applied to external interferors such as those produced by deliberate or unintentional jamming signals, or by strong multipath signals. An adaptive algorithm may be used for dynamic delay and gain matching. In a preferred embodiment, a hybrid technology hybrid temperature system incorporates both superconducting and semiconducting components to achieve enhanced broadband performance.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: April 21, 2020
    Assignee: Hypres Inc.
    Inventors: Deepnarayan Gupta, Amol Inamdar
  • Patent number: 10505097
    Abstract: A superconducting circuit is disclosed for fast digital readout of on-chip diagnostics in an array of devices in an integrated circuit. The digital readout comprises a digital RSFQ multiplexer to select the readout channel. This permits a large number of devices to be tested with a minimum of input and output lines. The devices may comprise digital devices (such as elementary RSFQ cells), or analog devices (such as inductors, resistors, or Josephson junctions) with a SQUID quantizer to generate a digital signal. The diagnostic array and the digital multiplexer are preferably configured to operate as part of the same integrated circuit at cryogenic temperatures.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: December 10, 2019
    Assignee: Hypres, Inc.
    Inventors: Amol Inamdar, Jie Ren, Denis Amparo
  • Patent number: 10348343
    Abstract: A system and method for receiving a signal, comprising an input adapted to receive a radio frequency signal having a strong interferer; a signal generator, adapted to produce a representation of the interferer as an analog signal generated based on an oversampled digital representation thereof; and a component adapted to cancel the strong interferer from radio frequency signal based on the generated analog signal to produce a modified radio frequency signal substantially absent the interferer. The system typically has a nonlinear component that either saturates or produces distortion from the strong interferer, which is thereby reduced. The system preferably employs high speed circuits which digitize and process radio frequency signals without analog mixers.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: July 9, 2019
    Assignee: Hypres, Inc.
    Inventors: Deepnarayan Gupta, Amol Inamdar
  • Patent number: 10230389
    Abstract: Superconductor analog-to-digital converters (ADC) offer high sensitivity and large dynamic range. One approach to increasing the dynamic range further is with a subranging architecture, whereby the output of a coarse ADC is converted back to analog and subtracted from the input signal, and the residue signal fed to a fine ADC for generation of additional significant bits. This also requires a high-gain broadband linear amplifier, which is not generally available within superconductor technology. In a preferred embodiment, a distributed digital fluxon amplifier is presented, which also integrates the functions of integration, filtering, and flux subtraction. A subranging ADC design provides two ADCs connected with the fluxon amplifier and subtractor circuitry that would provide a dynamic range extension by about 30-35 dB.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: March 12, 2019
    Assignee: Hypres, Inc.
    Inventors: Amol Inamdar, Deepnarayan Gupta
  • Patent number: 10222416
    Abstract: A superconducting circuit is disclosed for fast digital readout of on-chip diagnostics in an array of devices in an integrated circuit. The digital readout comprises a digital RSFQ multiplexer to select the readout channel. This permits a large number of devices to be tested with a minimum of input and output lines. The devices may comprise digital devices (such as elementary RSFQ cells), or analog devices (such as inductors, resistors, or Josephson junctions) with a SQUID quantizer to generate a digital signal. The diagnostic array and the digital multiplexer are preferably configured to operate as part of the same integrated circuit at cryogenic temperatures.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: March 5, 2019
    Assignee: Hypres, Inc.
    Inventors: Amol Inamdar, Jie Ren, Denis Amparo
  • Patent number: 10128878
    Abstract: A system and method for receiving a signal, comprising an input adapted to receive a radio frequency signal having a strong interferer; a signal generator, adapted to produce a representation of the interferer as an analog signal generated based on an oversampled digital representation thereof; and a component adapted to cancel the strong interferer from radio frequency signal based on the generated analog signal to produce a modified radio frequency signal substantially absent the interferer. The system typically has a nonlinear component that either saturates or produces distortion from the strong interferer, which is thereby reduced. The system preferably employs high speed circuits which digitize and process radio frequency signals without analog mixers.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: November 13, 2018
    Assignee: Hypres, Inc.
    Inventors: Deepnarayan Gupta, Amol Inamdar
  • Patent number: 10097221
    Abstract: A radio frequency receiver subject to a large in-band interferor employs active cancellation with coarse and at least one fine cancellation signal, each with a respective radio frequency combiner, in order to increase the effective dynamic range of the receiver for weak signals of interest. One or both can be digitally synthesized. This is particularly applicable for co-site interference, whereby the interfering transmit signal is directly accessible. A similar system and method may also be applied to external interferors such as those produced by deliberate or unintentional jamming signals, or by strong multipath signals. An adaptive algorithm may be used for dynamic delay and gain matching. In a preferred embodiment, a hybrid technology hybrid temperature system incorporates both superconducting and semiconducting components to achieve enhanced broadband performance.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: October 9, 2018
    Assignee: Hypres, Inc.
    Inventors: Deepnarayan Gupta, Amol Inamdar
  • Patent number: 9838051
    Abstract: A radio frequency receiver subject to a large in-band interferor employs active cancellation with coarse and at least one fine cancellation signal, each with a respective radio frequency combiner, in order to increase the effective dynamic range of the receiver for weak signals of interest. One or both can be digitally synthesized. This is particularly applicable for co-site interference, whereby the interfering transmit signal is directly accessible. A similar system and method may also be applied to external interferors such as those produced by deliberate or unintentional jamming signals, or by strong multipath signals. An adaptive algorithm may be used for dynamic delay and gain matching. In a preferred embodiment, a hybrid technology hybrid temperature system incorporates both superconducting and semiconducting components to achieve enhanced broadband performance.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: December 5, 2017
    Inventors: Deepnarayan Gupta, Amol Inamdar
  • Patent number: 9793933
    Abstract: A system and method for receiving a signal, comprising an input adapted to receive a radio frequency signal having a strong interferer; a signal generator, adapted to produce a representation of the interferer as an analog signal generated based on an oversampled digital representation thereof; and a component adapted to cancel the strong interferer from radio frequency signal based on the generated analog signal to produce a modified radio frequency signal substantially absent the interferer. The system typically has a nonlinear component that either saturates or produces distortion from the strong interferer, which is thereby reduced. The system preferably employs high speed circuits which digitize and process radio frequency signals without analog mixers.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: October 17, 2017
    Assignee: Hypres, Inc.
    Inventors: Deepnarayan Gupta, Amol Inamdar
  • Patent number: 9742429
    Abstract: Superconductor analog-to-digital converters (ADC) offer high sensitivity and large dynamic range. One approach to increasing the dynamic range further is with a subranging architecture, whereby the output of a coarse ADC is converted back to analog and subtracted from the input signal, and the residue signal fed to a fine ADC for generation of additional significant bits. This also requires a high-gain broadband linear amplifier, which is not generally available within superconductor technology. In a preferred embodiment, a distributed digital fluxon amplifier is presented, which also integrates the functions of integration, filtering, and flux subtraction. A subranging ADC design provides two ADCs connected with the fluxon amplifier and subtractor circuitry that would provide a dynamic range extension by about 30-35 dB.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: August 22, 2017
    Assignee: Hypres, Inc.
    Inventors: Amol Inamdar, Deepnarayan Gupta
  • Patent number: 9425838
    Abstract: A system and method for receiving a signal, comprising an input adapted to receive a radio frequency signal having a strong interferer; a signal generator, adapted to produce a representation of the interferer as an analog signal generated based on an oversampled digital representation thereof; and a component adapted to cancel the strong interferer from radio frequency signal based on the generated analog signal to produce a modified radio frequency signal substantially absent the interferer. The system typically has a nonlinear component that either saturates or produces distortion from the strong interferer, which is thereby reduced. The system preferably employs high speed circuits which digitize and process radio frequency signals without analog mixers.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: August 23, 2016
    Assignee: Hypres, Inc.
    Inventors: Deepnarayan Gupta, Amol Inamdar
  • Patent number: 9312878
    Abstract: Superconductor analog-to-digital converters (ADC) offer high sensitivity and large dynamic range. One approach to increasing the dynamic range further is with a subranging architecture, whereby the output of a coarse ADC is converted back to analog and subtracted from the input signal, and the residue signal fed to a fine ADC for generation of additional significant bits. This also requires a high-gain broadband linear amplifier, which is not generally available within superconductor technology. In a preferred embodiment, a distributed digital fluxon amplifier is presented, which also integrates the functions of integration, filtering, and flux subtraction. A subranging ADC design provides two ADCs connected with the fluxon amplifier and subtractor circuitry that would provide a dynamic range extension by about 30-35 dB.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: April 12, 2016
    Assignee: Hypres, Inc.
    Inventors: Amol Inamdar, Deepnarayan Gupta
  • Patent number: 9312895
    Abstract: A radio frequency receiver subject to a large in-band interferor employs active cancellation with coarse and at least one cancellation signals, each with a respective radio frequency combiner, in order to increase the effective dynamic range of the receiver for weak signals of interest. One or both can be digitally synthesized. This is particularly applicable for co-site interference, whereby the interfering transmit signal is directly accessible. A similar system and method may also be applied to external interferors such as those produced by deliberate or unintentional jamming signals, or by strong multipath signals. An adaptive algorithm may be used for dynamic delay and gain matching. In a preferred embodiment, a hybrid technology hybrid temperature system incorporates both superconducting and semiconducting components to achieve enhanced broadband performance.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: April 12, 2016
    Assignee: Hypres, Inc.
    Inventors: Deepnarayan Gupta, Amol Inamdar
  • Patent number: 8977223
    Abstract: A radio frequency receiver subject to a large in-band interferor employs active cancellation with coarse and at least one cancellation signals, each with a respective radio frequency combiner, in order to increase the effective dynamic range of the receiver for weak signals of interest. One or both can be digitally synthesized. This is particularly applicable for co-site interference, whereby the interfering transmit signal is directly accessible. A similar system and method may also be applied to external interferors such as those produced by deliberate or unintentional jamming signals, or by strong multipath signals. An adaptive algorithm may be used for dynamic delay and gain matching. In a preferred embodiment, a hybrid technology hybrid temperature system incorporates both superconducting and semiconducting components to achieve enhanced broadband performance.
    Type: Grant
    Filed: March 19, 2013
    Date of Patent: March 10, 2015
    Assignee: Hypres, Inc.
    Inventors: Deepnarayan Gupta, Amol Inamdar
  • Patent number: 8872690
    Abstract: Superconductor analog-to-digital converters (ADC) offer high sensitivity and large dynamic range. One approach to increasing the dynamic range further is with a subranging architecture, whereby the output of a coarse ADC is converted back to analog and subtracted from the input signal, and the residue signal fed to a fine ADC for generation of additional significant bits. This also requires a high-gain broadband linear amplifier, which is not generally available within superconductor technology. In a preferred embodiment, a distributed digital fluxon amplifier is presented, which also integrates the functions of integration, filtering, and flux subtraction. A subranging ADC design provides two ADCs connected with the fluxon amplifier and subtractor circuitry that would provide a dynamic range extension by about 30-35 dB.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: October 28, 2014
    Assignee: Hypres, Inc.
    Inventors: Amol Inamdar, Deepnarayan Gupta
  • Patent number: 8521117
    Abstract: A system and method for receiving a signal, comprising an input adapted to receive a radio frequency signal having a strong interferer; a signal generator, adapted to produce a representation of the interferer as an analog signal generated based on an oversampled digital representation thereof; and a component adapted to cancel the strong interferer from radio frequency signal based on the generated analog signal to produce a modified radio frequency signal substantially absent the interferer. The system typically has a nonlinear component that either saturates or produces distortion from the strong interferer, which is thereby reduced. The system preferably employs high speed circuits which digitize and process radio frequency signals without analog mixers.
    Type: Grant
    Filed: October 28, 2012
    Date of Patent: August 27, 2013
    Assignee: Hypres, Inc.
    Inventors: Deepnarayan Gupta, Amol Inamdar
  • Patent number: 8401509
    Abstract: A radio frequency receiver subject to a large in-band interferor employs active cancellation with coarse and at least one cancellation signals, each with a respective radio frequency combiner, in order to increase the effective dynamic range of the receiver for weak signals of interest. One or both can be digitally synthesized. This is particularly applicable for co-site interference, whereby the interfering transmit signal is directly accessible. A similar system and method may also be applied to external interferors such as those produced by deliberate or unintentional jamming signals, or by strong multipath signals. An adaptive algorithm may be used for dynamic delay and gain matching. In a preferred embodiment, a hybrid technology hybrid temperature system incorporates both superconducting and semiconducting components to achieve enhanced broadband performance.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: March 19, 2013
    Assignee: Hypres, Inc.
    Inventors: Deepnarayan Gupta, Amol Inamdar
  • Patent number: 8301104
    Abstract: A system and method for receiving a signal, comprising an input adapted to receive a radio frequency signal having a strong interferer; a signal generator, adapted to produce a representation of the interferer as an analog signal generated based on an oversampled digital representation thereof; and a component adapted to cancel the strong interferer from radio frequency signal based on the generated analog signal to produce a modified radio frequency signal substantially absent the interferer. The system typically has a nonlinear component that either saturates or produces distortion from the strong interferer, which is thereby reduced. The system preferably employs high speed circuits which digitize and process radio frequency signals without analog mixers.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: October 30, 2012
    Assignee: Hypres, Inc.
    Inventors: Deepnarayan Gupta, Amol Inamdar