Patents by Inventor Amr Mohammad E. A. SHALTOUT

Amr Mohammad E. A. SHALTOUT has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12117530
    Abstract: A laser beam steering system is disclosed which includes a laser source which produces a pulsed laser light beam with a frequency comb spectrum, a first metasurface configured to i) directly receive the pulsed laser and ii) directly generate a diffracted pulsed laser output at different frequencies with a beam at a center frequency normal to the first metasurface; and a second metasurface configured to i) directly receive the diffracted pulsed laser output and ii) to focus onto different foci at a focal plane, light propagating from the focal plane leads to generation of one or more optical beams that are controlled in space and time.
    Type: Grant
    Filed: July 4, 2023
    Date of Patent: October 15, 2024
    Assignees: Purdue Research Foundation, THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Amr Mohammad E. A. Shaltout, Vladimir M. Shalaev, Mark L. Brongersma
  • Publication number: 20240183985
    Abstract: A laser beam steering system is disclosed which includes a laser source which produces a pulsed laser light beam with a frequency comb spectrum, a first metasurface configured to i) directly receive the pulsed laser and ii) directly generate a diffracted pulsed laser output at different frequencies with a beam at a center frequency normal to the first metasurface; and a second metasurface configured to i) directly receive the diffracted pulsed laser output and ii) to focus onto different foci at a focal plane, light propagating from the focal plane leads to generation of one or more optical beams that are controlled in space and time.
    Type: Application
    Filed: July 4, 2023
    Publication date: June 6, 2024
    Applicants: Purdue Research Foundation, THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Amr Mohammad E. A. SHALTOUT, Vladimir M. SHALAEV, Mark L. BRONGERSMA
  • Patent number: 11698460
    Abstract: A laser beam steering system is disclosed. The system includes a laser source which produces a pulsed laser light beam with a frequency comb spectrum, a metasurface configured to i) receive the pulsed laser, ii) generate a diffracted pulsed laser output at different frequencies with a beam at a center frequency normal to the metasurface, and iii) directing light at different frequencies onto different foci at a focal plane, light propagating from the focal plane leads to generation of one or more optical beams that are controlled in space and time.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: July 11, 2023
    Assignees: Purdue Research Foundation, BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Amr Mohammad E. A. Shaltout, Vladimir M. Shalaev, Mark L. Brongersma
  • Publication number: 20200081099
    Abstract: A laser beam steering system is disclosed. The system includes a laser source which produces a pulsed laser light beam with a frequency comb spectrum, a metasurface configured to i) receive the pulsed laser, ii) generate a diffracted pulsed laser output at different frequencies with a beam at a center frequency normal to the metasurface, and iii) directing light at different frequencies onto different foci at a focal plane, light propagating from the focal plane leads to generation of one or more optical beams that are controlled in space and time.
    Type: Application
    Filed: April 17, 2018
    Publication date: March 12, 2020
    Applicants: Purdue Research Foundation, THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Amr Mohammad E. A. SHALTOUT, Vladimir M. SHALAEV, Mark L. BRONGERSMA
  • Publication number: 20170082842
    Abstract: The present invention provides a new approach for subwavelength cavity solutions. Employment of a reflecting metasurface based on plasmonic nanostructure elements changes the cavity resonance condition that currently causes restrictions on minimum length. The short length of wave propagation between the cavity walls is compensated by strong localization of electromechanical energy near the metasurface walls, which experience considerable phase shifts over a very small distance. Subwavelength 2D and 3D cavities find implementation as laser sources, optical parametric oscillators, interferometers, laser phase and frequency stabilizers, laser spatial and temporal filters, adaptive beam, and pulse shaping devices.
    Type: Application
    Filed: January 30, 2015
    Publication date: March 23, 2017
    Inventors: Amr Mohammad E. A. SHALTOUT, Alexander V. KILDISHEV, Vladimir M. SHALAEV