Patents by Inventor Amr Salahieh

Amr Salahieh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9586025
    Abstract: Steerable medical delivery devices and their methods of use.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: March 7, 2017
    Assignee: SHIFAMED HOLDINGS, LLC
    Inventors: Amr Salahieh, Jonah Lepak, Emma Lepak, Tom Saul, Jean-Pierre Dueri, Brice Arnault De La Menardiere, Clayton Baldwin
  • Patent number: 9585749
    Abstract: A replacement heart valve assembly. An expandable anchor is disclosed that has a skirt region, a lip region, and a plurality of posts attached to the skirt region. A replacement heart valve is attached to the posts. The lip region has interlocking elements that are secured to the posts where the interlocking elements have eyelets. Tabs extend into the eyelets to mate with holes in the posts.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: March 7, 2017
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider, Jeff A. Krolik
  • Publication number: 20170056172
    Abstract: The invention includes methods of and apparatus for endovascularly replacing a heart valve of a patient. One aspect of the invention provides a method including the steps of endovascularly delivering a replacement valve and an expandable anchor to a vicinity of the heart valve in an unexpanded configuration; and applying an external non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to change the shape of the anchor, such as by applying proximally and/or distally directed force on the anchor using a releasable deployment tool to expand and contract the anchor or parts of the anchor. Another aspect of the invention provides an apparatus including a replacement valve; an anchor; and a deployment tool comprising a plurality of anchor actuation elements adapted to apply a non-hydraulically expanding or non-pneumatically expanding actuation force on the anchor to reshape the anchor.
    Type: Application
    Filed: April 26, 2016
    Publication date: March 2, 2017
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Jean-Pierre Dueri, Hans F. Valencia, Brian D. Brandt, Dwight P. Morejohn, Claudio Argento, Tom Saul, Ulrich R. Haug
  • Publication number: 20170049562
    Abstract: An accommodating intraocular lens comprises a first lens component, a second lens component, and an adhesive between portions of the two lens components. The cured adhesive bonds the lens components to form a fluid chamber. The lens components are bonded to one another along a seam which extends circumferentially along at least a portion of the lens components. The lens components may comprise the same polymer material. The cured adhesive also comprises the polymer or a prepolymer of the polymer to provide increased strength. The polymer is hydratable such that the lens components and the cured adhesive therebetween can swell together to inhibit stresses between the lens components and the cured adhesive.
    Type: Application
    Filed: November 7, 2016
    Publication date: February 23, 2017
    Inventors: Claudio Argento, Bob Vaughan, Amr Salahieh, Tom Saul
  • Publication number: 20170042614
    Abstract: Cardiac tissue ablation catheters including an inflatable and flexible toroidal or spherically shaped balloon disposed at a distal region of an elongate member, a flexible circuit carried by an outer surface of the balloon, the flexible circuit including, a plurality of flexible branches conforming to the radially outer surface of the balloon, each of the plurality of flexible branches including a substrate, a conductive trace carried by the substrate, and an ablation electrode carried by the substrate, the ablation electrode in electrical communication with the conductive trace, and an elongate shaft comprising a guidewire lumen extending in the elongate member and extending from a proximal region of the inflatable balloon to distal region of the inflatable balloon and being disposed within the inflatable balloon, wherein a distal region of the elongate shaft is secured directly or indirectly to the distal region of the inflatable balloon.
    Type: Application
    Filed: October 31, 2016
    Publication date: February 16, 2017
    Inventors: Amr SALAHIEH, Jonah LEPAK, Emma LEPAK, Brian D. BRANDT, John P. CLAUDE, Tom SAUL
  • Publication number: 20170042615
    Abstract: Cardiac tissue ablation catheters including an inflatable and flexible toroidal or spherically shaped balloon disposed at a distal region of an elongate member, a flexible circuit carried by an outer surface of the balloon, the flexible circuit including, a plurality of flexible branches conforming to the radially outer surface of the balloon, each of the plurality of flexible branches including a substrate, a conductive trace carried by the substrate, and an ablation electrode carried by the substrate, the ablation electrode in electrical communication with the conductive trace, and an elongate shaft comprising a guidewire lumen extending in the elongate member and extending from a proximal region of the inflatable balloon to distal region of the inflatable balloon and being disposed within the inflatable balloon, wherein a distal region of the elongate shaft is secured directly or indirectly to the distal region of the inflatable balloon.
    Type: Application
    Filed: October 31, 2016
    Publication date: February 16, 2017
    Inventors: Amr SALAHIEH, Jonah LEPAK, Emma LEPAK, Brian D. BRANDT, John P. CLAUDE, Tom SAUL
  • Publication number: 20170027601
    Abstract: Medical systems and devices adapted to deliver a fluid agent to target tissue within a patient.
    Type: Application
    Filed: May 27, 2016
    Publication date: February 2, 2017
    Inventors: Amr SALAHIEH, Tom SAUL, Eliot T. KIM, Ari RYAN
  • Publication number: 20170027693
    Abstract: Medical devices and delivery systems for delivering medical devices to a target location within a subject. In some embodiments the medical devices can be locked in a fully deployed and locked configuration. In some embodiments the delivery systems are configured with a single actuator to control the movement of multiple components of the delivery system. In some embodiments the actuator controls the independent and dependent movement of multiple components of the delivery system.
    Type: Application
    Filed: June 6, 2016
    Publication date: February 2, 2017
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: David J. Paul, Benjamin T. Sutton, Brian K. McCollum, Brian D. Brandt, Emma Leung, Kenneth M. Martin, Amr Salahieh, Daniel K. Hildebrand
  • Patent number: 9532872
    Abstract: The present invention relates to apparatus and methods for endovascularly delivering and releasing a prosthesis, e.g., an aortic prosthesis, within and/or across a patient's native heart valve, referred to hereinafter as replacing the patient's heart valve. In some embodiments the delivery system comprises a plurality of first actuatable element adapted to engage a plurality of second elements in a first configuration to capture the implant within the delivery system, and wherein the plurality of first actuatable element are adapted to engage the plurality of second elements in a second configuration and to release the implant from the delivery system.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: January 3, 2017
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Hans F. Valencia, Brian D. Brandt, Claudio Argento, Ulrich R. Haug, Jean-Pierre Dueri, Daniel K. Hildebrand, Dwight P. Morejohn, Tom Saul
  • Publication number: 20160374748
    Abstract: The present disclosure is directed to an expandable energy delivery assembly adapted to deliver electrical energy to tissue. The assembly includes an elongate device including an irrigation shaft defining a irrigation lumen fluidly couplable to an irrigation source and a rapid exchange shaft defining a guidewire lumen configured for reception and passage of a guidewire. The assembly also includes an inflatable element that is secured to the elongate device. The inflatable element includes a double helical electrode disposed on the inflatable element that makes between about 0.5 to about 1.5 revolutions around the inflatable element.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 29, 2016
    Inventors: Amr Salahieh, Tom Saul
  • Publication number: 20160374689
    Abstract: A device for mechanically reducing the volume of a lung, comprising a distal anchor, a proximal anchor, and a tether extending between the distal and proximal anchors, the device configured so that the distance between the anchors measured along the tether can be increased or decreased and maintained after release of a delivery device. Some embodiments are a method of endobronchially deploying an anchoring device within the lung to reduce the lung volume, the anchoring device comprising a distal anchor, a proximal anchor, and a tether extending between the distal and proximal anchors, the device configured such that the distance between the distal and proximal anchors measured along the tether can be increased or decreased and then maintained after release of the anchoring device from a delivery device, reducing the volume of the lung by decreasing the distance between the distal and proximal anchors, and maintaining the decreased distance.
    Type: Application
    Filed: July 11, 2014
    Publication date: December 29, 2016
    Inventors: Don TANAKA, Tom SAUL, Thomas MCGRATH, Jeffery A. KROLIK, Jeff BARBOUR, Amr SALAHIEH
  • Publication number: 20160376063
    Abstract: The invention provides a two-part package and method of use for a pre-attached medical implant and delivery tool system. The package includes a wet compartment and a dry compartment and allows a pre-attached implant and delivery tool system to be at least partially stored immersed in a fluid in the wet compartment and at least partially stored in the dry compartment. In one embodiment the implant comprises a replacement heart valve, and the heart valve is stored inside the wet compartment while the heart valve delivery tool remains dry in the dry compartment.
    Type: Application
    Filed: June 30, 2016
    Publication date: December 29, 2016
    Applicant: BOSTON SCIENTIFIC SCIMED INC.
    Inventors: Amr Salahieh, Tom Saul, Robert Geshlider, Andrea Johnson, Dwight Morejohn, Daniel Hildebrand, Jean-Pierre Dueri
  • Patent number: 9526609
    Abstract: The present invention provides methods and apparatus for endovascularly replacing a patient's heart valve. The apparatus includes a replacement valve and an anchor having an expandable braid. In some embodiments, the expandable braid is fabricated from a single strand of wire. In some embodiments, the expandable braid comprises at least one turn feature. The anchor and the valve preferably are configured for endovascular delivery and deployment.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: December 27, 2016
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Ulrich R. Haug, Hans F. Valencia, Robert A. Geshlider, Tom Saul, Dwight P. Morejohn
  • Publication number: 20160345947
    Abstract: Steerable medical devices and methods of use. In some embodiments, the steerable medical devices include a steerable portion with a stiffness that varies along the length of the steerable portion.
    Type: Application
    Filed: March 28, 2016
    Publication date: December 1, 2016
    Inventors: Amr SALAHIEH, Jonah LEPAK, Emma LEPAK, Tom SAUL, Jean-Pierre DUERI, Joseph Creagan TRAUTMAN, Christopher T. CHENG, Richard Joseph RENATI, Colin MIXTER, Marc BITOUN
  • Patent number: 9486311
    Abstract: An accommodating intraocular lens comprises a first lens component, a second lens component, and an adhesive between portions of the two lens components. The cured adhesive bonds the lens components to form a fluid chamber. The lens components are bonded to one another along a seam which extends circumferentially along at least a portion of the lens components. The lens components may comprise the same polymer material. The cured adhesive also comprises the polymer or a prepolymer of the polymer to provide increased strength. The polymer is hydratable such that the lens components and the cured adhesive therebetween can swell together to inhibit stresses between the lens components and the cured adhesive.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: November 8, 2016
    Assignee: Shifamed Holdings, LLC
    Inventors: Claudio Argento, Bob Vaughan, Amr Salahieh, Tom Saul
  • Patent number: 9393094
    Abstract: The invention provides a two-part package and method of use for a pre-attached medical implant and delivery tool system. The package includes a wet compartment and a dry compartment and allows a pre-attached implant and delivery tool system to be at least partially stored immersed in a fluid in the wet compartment and at least partially stored in the dry compartment. In one embodiment the implant comprises a replacement heart valve, and the heart valve is stored inside the wet compartment while the heart valve delivery tool remains dry in the dry compartment.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: July 19, 2016
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Amr Salahieh, Tom Saul, Robert Geshlider, Andrea Johnson, Dwight Morejohn, Daniel Hildebrand, Jean-Pierre Dueri
  • Patent number: 9393113
    Abstract: A method for endovascularly replacing a heart valve of a patient. In some embodiments the method includes the steps of: endovascularly delivering a replacement valve and an expandable anchor in an unexpanded configuration within a catheter to a vicinity of the heart valve; deploying the anchor from the catheter; expanding the anchor to contact tissue at an anchor site; and retrieving the anchor into the catheter. The invention also includes an apparatus for endovascularly replacing a heart valve, including: a catheter; a replacement valve configured to be disposed within the catheter for delivery to a vicinity of the heart valve; and an expandable anchor configured to be disposed within the catheter for delivery to a vicinity of the heart valve, to be deployed from the catheter, to be expanded to contact tissue at an anchor site and to be retrieved back into the catheter after having been expanded.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: July 19, 2016
    Assignee: BOSTON SCIENTIFIC SCIMED INC.
    Inventors: Amr Salahieh, Brian D. Brandt, Dwight P. Morejohn, Ulrich R. Haug, Jean-Pierre Dueri, Hans F. Valencia, Robert A. Geshlider, Jeff A. Krolik
  • Patent number: 9387076
    Abstract: Medical devices and delivery systems for delivering medical devices to a target location within a subject. In some embodiments the medical devices can be locked in a fully deployed and locked configuration. In some embodiments the delivery systems are configured with a single actuator to control the movement of multiple components of the delivery system. In some embodiments the actuator controls the independent and dependent movement of multiple components of the delivery system.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: July 12, 2016
    Assignee: BOSTON SCIENTIFIC SCIMED INC.
    Inventors: David Paul, Benjamin Sutton, Brian McCollum, Brian D. Brandt, Emma Leung, Kenneth M. Martin, Amr Salahieh, Daniel Hildebrand
  • Patent number: 9358106
    Abstract: The present invention relates to apparatus and methods for performing valvuloplasty. In some embodiments, the apparatus includes an expandable braid valvuloplasty device. In some embodiments, the methods and apparatus may be used as an adjunct to percutaneous heart valve replacement. In some embodiments, the apparatus and methods may provide a medical practitioner with feedback, monitoring or measurement information, e.g., information relevant to percutaneous transcatheter heart valve replacement.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: June 7, 2016
    Assignee: BOSTON SCIENTIFIC SCIMED INC.
    Inventors: Amr Salahieh, Dwight P. Morejohn, Daniel K. Hildebrand, Tom Saul
  • Patent number: 9358110
    Abstract: Medical devices and delivery systems for delivering medical devices to a target location within a subject. In some embodiments the medical devices can be locked in a fully deployed and locked configuration. In some embodiments the delivery systems are configured with a single actuator to control the movement of multiple components of the delivery system. In some embodiments the actuator controls the independent and dependent movement of multiple components of the delivery system.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: June 7, 2016
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: David J. Paul, Benjamin T. Sutton, Brian K. McCollum, Brian D. Brandt, Emma Leung, Kenneth M. Martin, Amr Salahieh, Daniel K. Hildebrand