Patents by Inventor Amy Anderson

Amy Anderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12077912
    Abstract: Pulps, cellulose ether products, and methods of making pulps are described.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: September 3, 2024
    Assignee: INTERNATIONAL PAPER COMPANY
    Inventors: Mengkui Luo, Michael Rea, Angela Dodd, Andrew Dodd, Amy Anderson-Gaber, Kris Lindenauer, Hugh West, Charles Miller
  • Publication number: 20220298726
    Abstract: Pulps, cellulose ether products, and methods of making pulps are described.
    Type: Application
    Filed: June 6, 2022
    Publication date: September 22, 2022
    Inventors: Mengkui Luo, Michael Rea, Angela Dodd, Andrew Dodd, Amy Anderson-Gaber, Kris Lindenauer, Hugh West, Charles Miller
  • Patent number: 11422504
    Abstract: The invention provides a method, apparatus and system for separating blood and other types of cellular components, and can be combined with holographic optical trapping manipulation or other forms of optical tweezing. One of the exemplary methods includes providing a first flow having a plurality of blood components; providing a second flow; contacting the first flow with the second flow to provide a first separation region; and differentially sedimenting a first blood cellular component of the plurality of blood components into the second flow while concurrently maintaining a second blood cellular component of the plurality of blood components in the first flow. The second flow having the first blood cellular component is then differentially removed from the first flow having the second blood cellular component. Holographic optical traps may also be utilized in conjunction with the various flows to move selected components from one flow to another, as part of or in addition to a separation stage.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: August 23, 2022
    Assignee: ABS GLOBAL, INC.
    Inventors: Daniel Mueth, Joseph Plewa, Jessica Shireman, Amy Anderson, Lewis Gruber, Neil Rosenbaum
  • Patent number: 11415936
    Abstract: The invention provides a method, apparatus and system for separating blood and other types of cellular components, and can be combined with holographic optical trapping manipulation or other forms of optical tweezing. One of the exemplary methods includes providing a first flow having a plurality of blood components; providing a second flow; contacting the first flow with the second flow to provide a first separation region; and differentially sedimenting a first blood cellular component of the plurality of blood components into the second flow while concurrently maintaining a second blood cellular component of the plurality of blood components in the first flow. The second flow having the first blood cellular component is then differentially removed from the first flow having the second blood cellular component. Holographic optical traps may also be utilized in conjunction with the various flows to move selected components from one flow to another, as part of or in addition to a separation stage.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: August 16, 2022
    Assignee: ABS GLOBAL, INC.
    Inventors: Daniel Mueth, Joseph Plewa, Jessica Shireman, Amy Anderson, Lewis Gruber, Neil Rosenbaum
  • Patent number: 11352748
    Abstract: Pulps, cellulose ether products, and methods of making pulps are described.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: June 7, 2022
    Assignee: INTERNATIONAL PAPER COMPANY
    Inventors: Mengkui Luo, Michael Rea, Angela Dodd, Andrew Dodd, Amy Anderson-Gaber, Kris Lindenauer, Hugh West, Charles Miller
  • Patent number: 11243494
    Abstract: The invention, provides a method, apparatus and system for separating blood and other types of cellular components, and can be combined with holographic optical trapping manipulation or other forms of optical tweezing. One of the exemplary methods includes providing a first flow having a plurality of blood components; providing a second flow; contacting the first flow with the second flow to provide a first separation region; and differentially sedimenting a first blood cellular component of the plurality of blood components into the second flow while concurrently maintaining a second blood cellular component of the plurality of blood components in the first flow. The second flow having the first blood cellular component is then differentially removed from the first flow having the second blood cellular component. Holographic optical traps may also be utilized in conjunction with the various flows to move selected components from one flow to another, as part of or in addition to a separation stage.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: February 8, 2022
    Assignee: ABS GLOBAL, INC.
    Inventors: Daniel Mueth, Joseph Plewa, Jessica Shireman, Amy Anderson, Lewis Gruber, Neil Rosenbaum
  • Publication number: 20210397127
    Abstract: The invention provides a method, apparatus and system for separating blood and other types of cellular components, and can be combined with holographic optical trapping manipulation or other forms of optical tweezing. One of the exemplary methods includes providing a first flow having a plurality of blood components; providing a second flow; contacting the first flow with the second flow to provide a first separation region; and differentially sedimenting a first blood cellular component of the plurality of blood components into the second flow while concurrently maintaining a second blood cellular component of the plurality of blood components in the first flow. The second flow having the first blood cellular component is then differentially removed from the first flow having the second blood cellular component. Holographic optical traps may also be utilized in conjunction with the various flows to move selected components from one flow to another, as part of or in addition to a separation stage.
    Type: Application
    Filed: August 27, 2021
    Publication date: December 23, 2021
    Inventors: Daniel Mueth, Joseph Plewa, Jessica Shireman, Amy Anderson, Lewis Gruber, Neil Rosenbaum
  • Publication number: 20210389723
    Abstract: The invention provides a method, apparatus and system for separating blood and other types of cellular components, and can be combined with holographic optical trapping manipulation or other forms of optical tweezing. One of the exemplary methods includes providing a first flow having a plurality of blood components; providing a second flow; contacting the first flow with the second flow to provide a first separation region; and differentially sedimenting a first blood cellular component of the plurality of blood components into the second flow while concurrently maintaining a second blood cellular component of the plurality of blood components in the first flow. The second flow having the first blood cellular component is then differentially removed from the first flow having the second blood cellular component. Holographic optical traps may also be utilized in conjunction with the various flows to move selected components from one flow to another, as part of or in addition to a separation stage.
    Type: Application
    Filed: August 26, 2021
    Publication date: December 16, 2021
    Inventors: Daniel Mueth, Joseph Plewa, Jessica Shireman, Amy Anderson, Lewis Gruber, Neil Rosenbaum
  • Publication number: 20200040525
    Abstract: Pulps, cellulose ether products, and methods of making pulps are described.
    Type: Application
    Filed: August 16, 2018
    Publication date: February 6, 2020
    Applicant: INTERNATIONAL PAPER COMPANY
    Inventors: Mengkui Luo, Michael Rea, Angela Dodd, Andrew Dodd, Amy Anderson-Gaber, Kris Lindenauer, Hugh West, Charles Miller
  • Publication number: 20190137931
    Abstract: The invention, provides a method, apparatus and system for separating blood and other types of cellular components, and can be combined with holographic optical trapping manipulation or other forms of optical tweezing. One of the exemplary methods includes providing a first flow having a plurality of blood components; providing a second flow; contacting the first flow with the second flow to provide a first separation region; and differentially sedimenting a first blood cellular component of the plurality of blood components into the second flow while concurrently maintaining a second blood cellular component of the plurality of blood components in the first flow. The second flow having the first blood cellular component is then differentially removed from the first flow having the second blood cellular component.
    Type: Application
    Filed: January 3, 2019
    Publication date: May 9, 2019
    Inventors: Daniel Mueth, Joseph Plewa, Jessica Shireman, Amy Anderson, Lewis Gruber, Neil Rosenbaum
  • Patent number: 10216144
    Abstract: The invention provides a method, apparatus and system for separating blood and other types of cellular components, and can be combined with holographic optical trapping manipulation or other forms of optical tweezing. One of the exemplary methods includes providing a first flow having a plurality of blood components; providing a second flow; contacting the first flow with the second flow to provide a first separation region; and differentially sedimenting a first blood cellular component of the plurality of blood components into the second flow while concurrently maintaining a second blood cellular component of the plurality of blood components in the first flow. The second flow having the first blood cellular component is then differentially removed from the first flow having the second blood cellular component. Holographic optical traps may also be utilized in conjunction with the various flows to move selected components from one flow to another, as part of or in addition to a separation stage.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: February 26, 2019
    Assignee: Premium Genetics (UK) LTD
    Inventors: Daniel Mueth, Joseph Plewa, Jessica Shireman, Amy Anderson, Lewis Gruber, Neil Rosenbaum
  • Patent number: 9977401
    Abstract: The invention provides a method, apparatus and system for separating blood and other types of cellular components, and can be combined with holographic optical trapping manipulation or other forms of optical tweezing. One of the exemplary methods includes providing a first flow having a plurality of blood components; providing a second flow; contacting the first flow with the second flow to provide a first separation region; and differentially sedimenting a first blood cellular component of the plurality of blood components into the second flow while concurrently maintaining a second blood cellular component of the plurality of blood components in the first flow. The second flow having the first blood cellular component is then differentially removed from the first flow having the second blood cellular component. Holographic optical traps may also be utilized in conjunction with the various flows to move selected components from one flow to another, as part of or in addition to a separation stage.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: May 22, 2018
    Assignee: PREMIUM GENETICS (UK) LTD.
    Inventors: Daniel Mueth, Joseph Plewa, Jessica Shireman, Amy Anderson, Lewis Gruber, Neil Rosenbaum
  • Publication number: 20170313669
    Abstract: Provided herein are lactone compounds and pharmaceutical compositions comprising said compounds. The subject compounds and compositions are useful as inhibitors of serine hydrolases, such as ABHD16A. Furthermore, the subject compounds and compositions may be useful for the treatment of, for example, PHARC and other neuroinflammatory diseases.
    Type: Application
    Filed: October 27, 2015
    Publication date: November 2, 2017
    Inventors: Benjamin F. CRAVATT, Siddhesh S. KAMAT, William H. PARSONS, Amy R. HOWELL, Kaddy CAMARA, Amy ANDERSON
  • Publication number: 20160299120
    Abstract: The invention provides a method, apparatus and system for separating blood and other types of cellular components, and can be combined with holographic optical trapping manipulation or other forms of optical tweezing. One of the exemplary methods includes providing a first flow having a plurality of blood components; providing a second flow; contacting the first flow with the second flow to provide a first separation region; and differentially sedimenting a first blood cellular component of the plurality of blood components into the second flow while concurrently maintaining a second blood cellular component of the plurality of blood components in the first flow. The second flow having the first blood cellular component is then differentially removed from the first flow having the second blood cellular component. Holographic optical traps may also be utilized in conjunction with the various flows to move selected components from one flow to another, as part of or in addition to a separation stage.
    Type: Application
    Filed: April 15, 2016
    Publication date: October 13, 2016
    Inventors: Daniel Mueth, Joseph Plewa, Jessica Shireman, Amy Anderson, Lewis Gruber, Neil Rosenbaum
  • Publication number: 20160299469
    Abstract: The invention provides a method, apparatus and system for separating blood and other types of cellular components, and can be combined with holographic optical trapping manipulation or other forms of optical tweezing. One of the exemplary methods includes providing a first flow having a plurality of blood components; providing a second flow; contacting the first flow with the second flow to provide a first separation region; and differentially sedimenting a first blood cellular component of the plurality of blood components into the second flow while concurrently maintaining a second blood cellular component of the plurality of blood components in the first flow. The second flow having the first blood cellular component is then differentially removed from the first flow having the second blood cellular component. Holographic optical traps may also be utilized in conjunction with the various flows to move selected components from one flow to another, as part of or in addition to a separation stage.
    Type: Application
    Filed: April 15, 2016
    Publication date: October 13, 2016
    Inventors: Daniel Mueth, Joseph Plewa, Jessica Shireman, Amy Anderson, Lewis Gruber, Neil Rosenbaum
  • Publication number: 20160299264
    Abstract: Embodiments generally relate to methods for preventing the formation of an emulsion in a liquid lens. In one embodiment, the method comprises fabricating a top substrate, a bottom substrate, and a central substrate including a cavity configured to be filled by first and second liquids. The liquid lens comprising the top substrate, the bottom substrate and the central substrate is assembled, with at least one of the top substrate and the bottom substrate in the assembled liquid lens being characterized by a stabilizing feature determining that in response to an impact load on the assembled liquid lens that would cause localized pressure drops of maximum magnitude X in the absence of the stabilizing feature, the maximum magnitude of localized pressure drops within the liquid lens is smaller than X.
    Type: Application
    Filed: August 12, 2015
    Publication date: October 13, 2016
    Applicant: INVENIOS
    Inventors: Raymond Miller Karam, Vijay Albuquerque, Georges Roussos, Amy Anderson, John Koons, Brian Nilsen, Rob Hobden, Tony Chobot
  • Patent number: 9335295
    Abstract: The invention provides a method, apparatus and system for separating blood and other types of cellular components, and can be combined with holographic optical trapping manipulation or other forms of optical tweezing. One of the exemplary methods includes providing a first flow having a plurality of blood components; providing a second flow; contacting the first flow with the second flow to provide a first separation region; and differentially sedimenting a first blood cellular component of the plurality of blood components into the second flow while concurrently maintaining a second blood cellular component of the plurality of blood components in the first flow. The second flow having the first blood cellular component is then differentially removed from the first flow having the second blood cellular component. Holographic optical traps may also be utilized in conjunction with the various flows to move selected components from one flow to another, as part of or in addition to a separation stage.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: May 10, 2016
    Assignee: Premium Genetics (UK) LTD
    Inventors: Daniel Mueth, Joseph Plewa, Jessica Shireman, Amy Anderson, Lewis Gruber, Neil Rosenbaum
  • Publication number: 20160047777
    Abstract: The invention provides a method, apparatus and system for separating blood and other types of cellular components, and can be combined with holographic optical trapping manipulation or other forms of optical tweezing. One of the exemplary methods includes providing a first flow having a plurality of blood components; providing a second flow; contacting the first flow with the second flow to provide a first separation region; and differentially sedimenting a first blood cellular component of the plurality of blood components into the second flow while concurrently maintaining a second blood cellular component of the plurality of blood components in the first flow. The second flow having the first blood cellular component is then differentially removed from the first flow having the second blood cellular component. Holographic optical traps may also be utilized in conjunction with the various flows to move selected components from one flow to another, as part of or in addition to a separation stage.
    Type: Application
    Filed: August 19, 2015
    Publication date: February 18, 2016
    Applicant: PREMIUM GENETICS (UK) LTD.
    Inventors: Daniel MUETH, Joseph PLEWA, Jessica SHIREMAN, Amy ANDERSON, Lewis GRUBER, Neil ROSENBAUM
  • Patent number: 9140690
    Abstract: A method of identifying at least one component from a plurality of components in a fluid mixture introduced into a flow apparatus, includes: introducing a first flow into a first input channel in the apparatus which contains the fluid mixture; introducing additional flows of buffer solution into a plurality of buffer input channels in the apparatus, the plurality of buffer channels which are disposed on either side of the first input channel; wherein the first flow and additional flows have a flow direction along a length of the apparatus; identifying selected components of the plurality of components using a detector apparatus; emitting a light beam from a laser which damages or kills selected components of the plurality of components; receiving the first flow and the additional flows in at least one channel disposed at the other end of the apparatus, after operation of the light beam on the selected components.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: September 22, 2015
    Assignee: PREMIUM GENETICS (UK) LTD.
    Inventors: Daniel Mueth, Joseph Plewa, Jessica Shireman, Amy Anderson, Lewis Gruber, Neil Rosenbaum
  • Publication number: 20150192572
    Abstract: A method of identifying at least one component from a plurality of components in a fluid mixture introduced into a flow apparatus, includes: introducing a first flow into a first input channel in the apparatus which contains the fluid mixture; introducing additional flows of buffer solution into a plurality of buffer input channels in the apparatus, the plurality of buffer channels which are disposed on either side of the first input channel; wherein the first flow and additional flows have a flow direction along a length of the apparatus; identifying selected components of the plurality of components using a detector apparatus; emitting a light beam from a laser which damages or kills selected components of the plurality of components; receiving the first flow and the additional flows in at least one channel disposed at the other end of the apparatus, after operation of the light beam on the selected components.
    Type: Application
    Filed: March 19, 2015
    Publication date: July 9, 2015
    Applicant: PREMIUM GENETICS (UK) LTD.
    Inventors: Daniel MUETH, Joseph PLEWA, Jessica SHIREMAN, Amy ANDERSON, Lewis GRUBER, Neil ROSENBAUM