Patents by Inventor Amy Shun-Wen Yang

Amy Shun-Wen Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170309924
    Abstract: In solid polymer electrolyte fuel cells, an oxygen evolution reaction (OER) catalyst may be incorporated at the anode along with the primary hydrogen oxidation catalyst for purposes of tolerance to voltage reversal. Incorporating this OER catalyst in a layer at the interface between the anode's primary hydrogen oxidation anode catalyst and its gas diffusion layer can provide greatly improved tolerance to voltage reversal for a given amount of OER catalyst. Further, this improvement can be gained without sacrificing cell performance.
    Type: Application
    Filed: July 13, 2017
    Publication date: October 26, 2017
    Inventors: Sumit Kundu, Scott McDermid, Amy Shun-Wen Yang, Liviu Catoiu, Darija Susac
  • Patent number: 9564642
    Abstract: The degradation associated with repeated startup and shutdown of solid polymer electrolyte fuel cells comprising PtCo alloy cathode catalysts can be particularly poor. However, a marked and unexpected improvement in durability is observed as a result of incorporating a selectively conducting component in electrical series with the anode components in the fuel cell.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: February 7, 2017
    Assignees: Daimler AG, Ford Motor Company
    Inventors: Herwig Haas, Joy Roberts, Francine Berretta, Amy Shun-Wen Yang
  • Publication number: 20140030625
    Abstract: Use of a selectively conducting anode component in solid polymer electrolyte fuel cells can reduce the degradation associated with repeated startup and shutdown, but unfortunately can also adversely affect a cell's tolerance to voltage reversal. Use of a carbon sublayer in such cells can improve the tolerance to voltage reversal, but can adversely affect cell performance. However, employing an appropriate selection of selectively conducting material and carbon sublayer, in which the carbon sublayer is in contact with the side of the anode opposite the solid polymer electrolyte, can provide for cells that exhibit acceptable behaviour in every regard. A suitable selectively conducting material comprises platinum deposited on tin oxide.
    Type: Application
    Filed: July 24, 2013
    Publication date: January 30, 2014
    Inventors: Herwig Haas, Joy Roberts, Francine Berretta, Amy Shun-Wen Yang, Stephen Lee, Sima Ronasi
  • Patent number: 8580448
    Abstract: By incorporating a selectively conducting component in electrical series with the anode components in a solid polymer fuel cell, degradation during startup and shutdown can be reduced. As a result, the startup and shutdown procedures can be simplified and consequently certain system apparatus may be omitted. The anode does not need to be rapidly purged with hydrogen on startup or with air on shutdown. Additionally, the auxiliary load usually employed during such purging is not required.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: November 12, 2013
    Assignees: Daimler AG, Ford Motor Company
    Inventors: Herwig Haas, Francine Berretta, Yvonne Hsieh, Guy Pepin, Joy Roberts, Amy Shun-Wen Yang
  • Publication number: 20130236812
    Abstract: The degradation associated with repeated startup and shutdown of solid polymer electrolyte fuel cells comprising PtCo alloy cathode catalysts can be particularly poor. However, a marked and unexpected improvement in durability is observed as a result of incorporating a selectively conducting component in electrical series with the anode components in the fuel cell.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 12, 2013
    Applicants: FORD MOTOR COMPANY, DAIMLER AG
    Inventors: Herwig Haas, Joy Roberts, Francine Berretta, Amy Shun-Wen Yang
  • Publication number: 20130236807
    Abstract: The degradation associated with repeated startup and shutdown of solid polymer electrolyte fuel cells comprising PtCo alloy cathode catalysts can be particularly poor. However, a marked and unexpected improvement in durability is observed as a result of incorporating a selectively conducting component in electrical series with the anode components in the fuel cell.
    Type: Application
    Filed: March 12, 2012
    Publication date: September 12, 2013
    Applicants: FORD MOTOR COMPANY, DAIMLER AG
    Inventors: Herwig Haas, Joy Roberts, Francine Berretta, Amy Shun-Wen Yang
  • Publication number: 20130022890
    Abstract: In solid polymer electrolyte fuel cells, an oxygen evolution reaction (OER) catalyst may be incorporated at the anode along with the primary hydrogen oxidation catalyst for purposes of tolerance to voltage reversal. Incorporating this OER catalyst in a layer at the interface between the anode's primary hydrogen oxidation anode catalyst and its gas diffusion layer can provide greatly improved tolerance to voltage reversal for a given amount of OER catalyst. Further, this improvement can be gained without sacrificing cell performance.
    Type: Application
    Filed: July 17, 2012
    Publication date: January 24, 2013
    Applicants: Ford Motor Company, Daimler AG
    Inventors: Sumit Kundu, Scott McDermid, Amy Shun-Wen Yang, Liviu Catoiu, Darija Susac
  • Publication number: 20130017471
    Abstract: To reduce degradation of a solid polymer fuel cell during startup and shutdown, a selectively conducting component is incorporated in electrical series with the anode components in the fuel cell. The component is characterized by a low electrical resistance in the presence of hydrogen or fuel and a high resistance in the presence of air. High cathode potentials can be prevented by integrating such a component into the fuel cell. A suitable selectively conducting component can comprise a layer of selectively conducting material, such as a metal oxide.
    Type: Application
    Filed: December 22, 2010
    Publication date: January 17, 2013
    Applicants: FORD MOTOR COMPANY, DAIMLER AG
    Inventors: Herwig Haas, Joy Roberts, Francine Berretta, Amy Shun-Wen Yang, Yvonne Hsieh, Guy Pepin, Andrew Leow, Richard Fellows, Nicolae Barsan
  • Publication number: 20120328967
    Abstract: By incorporating a selectively conducting component in electrical series with the anode components in a solid polymer fuel cell, degradation during startup and shutdown can be reduced. As a result, the startup and shutdown procedures can be simplified and consequently certain system apparatus may be omitted. The anode does not need to be rapidly purged with hydrogen on startup or with air on shutdown. Additionally, the auxiliary load usually employed during such purging is not required.
    Type: Application
    Filed: June 21, 2011
    Publication date: December 27, 2012
    Applicants: FORD MOTOR COMPANY, DAIMLER AG
    Inventors: Herwig Haas, Francine Berretta, Yvonne Hsieh, Guy Pepin, Joy Roberts, Amy Shun-Wen Yang