Patents by Inventor An Andrew Zeng

An Andrew Zeng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11972469
    Abstract: A system for categorizing, visualizing, and recommending Cannabis products based on objective data of the chemical composition of products is described. This system allows Cannabis products to be visualized and compared based on their chemical composition, even by laypeople with little or no knowledge of the underlying objective data. A recommendation system is built upon this which can recommend products for consumption, including a user interface for receiving user input, which includes at least one of demographic data, desired level of psychoactivity, or prior experience with the product, a merchant interface for receiving merchant input, including at least one of general data descriptive of the regulated product, lab data descriptive of the regulated products chemical composition, and user data descriptive of subjective effects of the regulated product on a user; and a decision engine making a recommendation of product according to correlation of the lab data with the user data.
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: April 30, 2024
    Assignee: Leafly Holdings, Inc.
    Inventors: Nickolas Jikomes, Marc Brandon Hensley, Jason Makuch, Andrew MacRae, Nathan Lauer, Matthew Bollen, Stephanie Smith, Camille Lim, Michael Wityk, Adam Hilborn, Sam Starr, Christian Ramsey, Renata Le Duartes, III, Santiago Seira, Anna Zeng
  • Patent number: 11955645
    Abstract: Catalysts comprising a Ta layer having an outer layer with a layer comprising Pt directly thereon, wherein the Ta layer has an average thickness in a range from 0.04 to 30 nanometers, wherein the layer comprising Pt has an average thickness in a range from 0.04 to 50 nanometers, and wherein the Pt and Ta are present in an atomic ratio in a range from 0.01:1 to 10:1. Catalyst described herein are useful, for example, in fuel cell membrane electrode assemblies.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: April 9, 2024
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew J. L. Steinbach, Andrew T. Haug, Krzysztof A. Lewinski, Amy E. Hester, Grant M. Thoma, Cedric Bedoya, Zhenhua Zeng, Jeffrey P. Greeley
  • Publication number: 20240088572
    Abstract: According to one aspect, an integrated antenna and filter unit, IAFU, is provided. The IAFU includes a filter portion including at least one filter configured to filter RF signals to generate filtered RF signals and a plurality of filter pins configured to output filtered RF signals, and an antenna portion securable to the filter portion where the antenna portion includes a PCB including a plurality of conductor traces each mateable with a corresponding one of the plurality of filter pins to electrically couple the plurality of filter pins directly to corresponding ones of the plurality of conductor traces on the PCB, and a plurality of antennas securable to the PCB where the plurality of antennas are electrically coupled to the plurality of conductor traces.
    Type: Application
    Filed: October 26, 2023
    Publication date: March 14, 2024
    Inventors: Martin DA SILVEIRA, Neil MCGOWAN, Andrew MCNAIR, Weigang ZENG, Chunyun JIAN, Martin ETHIER, Francis MARION, Zhen Hong WANG
  • Publication number: 20220118587
    Abstract: An air-bearing chuck includes a nozzle portion and a gas channel portion. The nozzle portion is provided with a plurality of support force nozzles for generating an air cushion on a top surface of the nozzle portion. The gas channel portion includes a first gas channel configured to transmit a first gas to the plurality of support force nozzles to provide support force. Embodiments of the present application can implement that the first gas channel transmits the first gas to the plurality of support force nozzles to provide support force, and an air cushion is generated on the top surface of the nozzle portion by regulating gas flow of the first gas in the first gas channel, thereby keeping a supported object supported by the air cushion stably floating up on one side, away from the top surface of the nozzle portion, of the air cushion.
    Type: Application
    Filed: December 24, 2021
    Publication date: April 21, 2022
    Applicant: NANJING LIAN SEMICONDUCTOR LIMITED
    Inventor: An Andrew ZENG
  • Publication number: 20220120559
    Abstract: Embodiments of the present application provide a measuring apparatus and method of a wafer geometry. The measuring apparatus of the wafer geometry includes: an air-bearing chuck, configured to generate an air cushion to keep a wafer to be measured floating up on a top surface of the air-bearing chuck; and an interferometer, disposed on one side, away from the air-bearing chuck, of the wafer, and configured to obtain an interference fringe image of a front surface of the wafer to measure a geometry of the wafer based on the interference fringe image. An air cushion is generated by utilizing an air-bearing chuck to keep a wafer to be measured floating up on a top surface of the air-bearing chuck, thereby avoiding damage of the original shape of the wafer or contamination of the wafer by a clamping tool, and further reducing errors during measurement.
    Type: Application
    Filed: December 24, 2021
    Publication date: April 21, 2022
    Applicant: NANJING LIAN SEMICONDUCTOR LIMITED
    Inventor: An Andrew ZENG
  • Patent number: 11105753
    Abstract: A semiconductor equipment architecture WGT for wafer shape and flatness measurement is disclosed. The semiconductor equipment architecture WGT includes a reflective air-bearing chuck and a hybrid wafer thickness gauge. Also disclosed are the corresponding methods of measuring wafer shape and flatness using the architecture, the air-bearing chuck and the hybrid wafer thickness gauge.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: August 31, 2021
    Assignee: Nanjing LiAn Semiconductor Limited
    Inventor: An Andrew Zeng
  • Publication number: 20210247178
    Abstract: A semiconductor equipment architecture WGT for wafer shape and flatness measurement is disclosed. The semiconductor equipment architecture WGT includes a reflective air-bearing chuck and a hybrid wafer thickness gauge. Also disclosed are the corresponding methods of measuring wafer shape and flatness using the architecture, the air-bearing chuck and the hybrid wafer thickness gauge.
    Type: Application
    Filed: September 2, 2020
    Publication date: August 12, 2021
    Applicants: Nanjing LiAn Semiconductor Limited, Nanjing LiAn Semiconductor Limited
    Inventor: An Andrew ZENG
  • Publication number: 20210199597
    Abstract: A semiconductor equipment architecture WGT for wafer shape and flatness measurement is disclosed. The semiconductor equipment architecture WGT includes a reflective air-bearing chuck and a hybrid wafer thickness gauge. Also disclosed are the corresponding methods of measuring wafer shape and flatness using the architecture, the air-bearing chuck and the hybrid wafer thickness gauge.
    Type: Application
    Filed: March 1, 2021
    Publication date: July 1, 2021
    Inventor: An Andrew ZENG
  • Patent number: 11017520
    Abstract: An inspection system may include a controller coupled to a differential interference contrast imaging tool for generating images of a sample based on illumination with two sheared illumination beams. The controller may determine a first defect-induced phase shift based on a first set of images of a defect on the sample with a first selected illumination spectrum and two or more selected induced phase differences between the two sheared illumination beams, determine a second defect-induced phase shift based a second set of images of the defect with a second selected illumination spectrum and two or more selected induced phase differences between the two sheared illumination beams, and classify the defect as a metal or a non-metal based on a comparison of the first phase shift to the second phase shift.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: May 25, 2021
    Assignee: KLA Corporation
    Inventors: Andrew Zeng, Helen Heng Liu
  • Patent number: 10705026
    Abstract: The inspection system includes an illumination source, a TDI-CCD sensor, and a dark field/bright field sensor. A polarizer receives the light from the light source. The light from the polarizer is directed at a Wollaston prism, such as through a half wave plate. Use of the TDI-CCD sensor and the dark field/bright field sensor provide high spatial resolution, high defect detection sensitivity and signal-to-noise ratio, and fast inspection speed.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: July 7, 2020
    Assignee: KLA Corporation
    Inventors: Andrew Zeng, Xuan Wang, Steve Xu
  • Publication number: 20200132608
    Abstract: The inspection system includes an illumination source, a TDI-CCD sensor, and a dark field/bright field sensor. A polarizer receives the light from the light source. The light from the polarizer is directed at a Wollaston prism, such as through a half wave plate. Use of the TDI-CCD sensor and the dark field/bright field sensor provide high spatial resolution, high defect detection sensitivity and signal-to-noise ratio, and fast inspection speed.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 30, 2020
    Inventors: Raymond Chu, Andrew Zeng, Donald Pettibone, Chunsheng Huang, Bret Whiteside, Fabrice Paccoret, Xuan Wang, Chuanyong Huang, Steve Xu, Anatoly Romanovsky
  • Publication number: 20200074617
    Abstract: An inspection system may include a controller coupled to a differential interference contrast imaging tool for generating images of a sample based on illumination with two sheared illumination beams. The controller may determine a first defect-induced phase shift based on a first set of images of a defect on the sample with a first selected illumination spectrum and two or more selected induced phase differences between the two sheared illumination beams, determine a second defect-induced phase shift based a second set of images of the defect with a second selected illumination spectrum and two or more selected induced phase differences between the two sheared illumination beams, and classify the defect as a metal or a non-metal based on a comparison of the first phase shift to the second phase shift.
    Type: Application
    Filed: August 26, 2019
    Publication date: March 5, 2020
    Inventors: Andrew Zeng, Helen Heng Liu
  • Patent number: 10571248
    Abstract: A system includes one or more wafer geometry measurement tools configured to obtain geometry measurements from a wafer. The system also includes one or more processors in communication with the one or more wafer geometry measurement tools. The one or more processors are configured to apply a correction model to correct the geometry measurements obtained by the one or more wafer geometry measurement tools. The correction model is configured to correct measurement errors caused by a transparent film positioned on the wafer.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: February 25, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Helen Liu, Andrew Zeng
  • Patent number: 10236222
    Abstract: The system includes a dual interferometer sub-system configured to measure flatness across a substrate. The system includes a mass sensor configured to measure the mass of the substrate. The system includes a controller communicatively coupled to the dual interferometer sub-system and the mass sensor. The controller includes one or more processors. The one or more processors are configured to execute a set of program instructions stored in memory, the set of program instructions configured to cause the one or more processors to determine a thickness distribution of at least one of the substrate or a film deposited on the substrate as a function of position across the substrate based on one or more flatness measurements from the dual interferometer sub-system and one or more mass measurements from the mass sensor.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: March 19, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Dengpeng Chen, Andrew Zeng
  • Publication number: 20180226304
    Abstract: The system includes a dual interferometer sub-system configured to measure flatness across a substrate. The system includes a mass sensor configured to measure the mass of the substrate. The system includes a controller communicatively coupled to the dual interferometer sub-system and the mass sensor. The controller includes one or more processors. The one or more processor are configured to execute a set of program instructions stored in memory, the set of program instructions configured to cause the one or more processors to determine a thickness distribution of at least one of the substrate or a film deposited on the substrate as a function of position across the substrate based on one or more flatness measurements from the dual interferometer sub-system and one or more mass measurements from the mass sensor.
    Type: Application
    Filed: June 14, 2017
    Publication date: August 9, 2018
    Inventors: Dengpeng Chen, Andrew Zeng
  • Publication number: 20180195855
    Abstract: A system includes one or more wafer geometry measurement tools configured to obtain geometry measurements from a wafer. The system also includes one or more processors in communication with the one or more wafer geometry measurement tools. The one or more processors are configured to apply a correction model to correct the geometry measurements obtained by the one or more wafer geometry measurement tools. The correction model is configured to correct measurement errors caused by a transparent film positioned on the wafer.
    Type: Application
    Filed: July 13, 2017
    Publication date: July 12, 2018
    Inventors: Helen Liu, Andrew Zeng
  • Patent number: 9903708
    Abstract: A semiconductor measuring tool has a folding mirror configuration that directs a light beam to pass the same space multiple times to reduce the size and footprint. Furthermore, the folding mirrors may reflect the light beam at less than forty-five degrees; thereby allowing for smaller folding mirrors as compared to the prior art.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: February 27, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Chunhai Wang, Chunsheng Huang, Andrew An Zeng, Frederick Arnold Goodman, Shouhong Tang, Yi Zhang
  • Publication number: 20160265904
    Abstract: A semiconductor measuring tool has a folding mirror configuration that directs a light beam to pass the same space multiple times to reduce the size and footprint. Furthermore, the folding mirrors may reflect the light beam at less than forty-five degrees; thereby allowing for smaller folding mirrors as compared to the prior art.
    Type: Application
    Filed: March 7, 2016
    Publication date: September 15, 2016
    Inventors: Chunhai Wang, Chunsheng Huang, Andrew An Zeng, Frederick Arnold Goodman, Shouhong Tang, Yi Zhang
  • Patent number: 9279663
    Abstract: A semiconductor measuring tool has a folding mirror configuration that directs a light beam to pass the same space multiple times to reduce the size and footprint. Furthermore, the folding mirrors may reflect the light beam at less than forty-five degrees; thereby allowing for smaller folding mirrors as compared to the prior art.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: March 8, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Chunhai Wang, Chunsheng Huang, Andrew An Zeng, Frederick Arnold Goodman, Shouhong Tang, Yi Zhang
  • Patent number: 9163928
    Abstract: A calibration wafer and a method for calibrating an interferometer system are disclosed. The calibration method includes: determining locations of the holes defined in the calibration wafer based on two opposite intensity frame; comparing the locations of the holes against the locations measured utilizing an external measurement device; adjusting a first optical magnification or a second optical magnification at least partially based on the comparison result; defining a distortion map for each of the first and second intensity frames based on the comparison of the locations of the holes; generating an extended distortion map for each of the first and second intensity frames by map fitting the distortion map; and utilizing the extended distortion map for each of the first and second intensity frames to reduce at least one of: a registration error or an optical distortion in a subsequent measurement process.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: October 20, 2015
    Assignee: KLA-Tencor Corporation
    Inventors: Shouhong Tang, Chunhai Wang, Andrew An Zeng