Patents by Inventor An-Ting Chien

An-Ting Chien has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230268442
    Abstract: In accordance with some embodiments, a source/drain contact is formed by exposing a source/drain region through a first dielectric layer and a second dielectric layer. The second dielectric layer is recessed under the first dielectric layer, and a silicide region is formed on the source/drain region, wherein the silicide region has an expanded width.
    Type: Application
    Filed: April 18, 2023
    Publication date: August 24, 2023
    Inventors: Wei-Ting Chien, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11723287
    Abstract: A magnetic tunnel junction (MTJ) device includes a bottom electrode, a reference layer, a tunnel barrier layer, a free layer and a top electrode. The bottom electrode and the top electrode are facing each other. The reference layer, the tunnel barrier layer and the free layer are stacked from the bottom electrode to the top electrode, wherein the free layer includes a first ferromagnetic layer, a spacer and a second ferromagnetic layer, wherein the spacer is sandwiched by the first ferromagnetic layer and the second ferromagnetic layer, wherein the spacer includes oxidized spacer sidewall parts, the first ferromagnetic layer includes first oxidized sidewall parts, and the second ferromagnetic layer includes second oxidized sidewall parts. The present invention also provides a method of manufacturing a magnetic tunnel junction (MTJ) device.
    Type: Grant
    Filed: September 29, 2022
    Date of Patent: August 8, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Shih-Wei Su, Bin-Siang Tsai, Ting-An Chien
  • Publication number: 20230245383
    Abstract: Systems and methods used to perform touchless 3D scanning of a patient’s face in the prone position are disclosed. In some embodiments, the systems include a rotatable 3D scanning device to capture 3D spatial data points of the patient’s face and a reference frame. 3D digital mesh models are generated from the 3D spatial data points. A patient 3D digital mesh model is registered with a patient 3D model and a reference frame digital mesh model is registered with a reference frame 3D model. The 3D scanning device can include a handheld rotatable 3D scanner member or a mechanically rotatable 3D scanner member.
    Type: Application
    Filed: February 2, 2022
    Publication date: August 3, 2023
    Inventors: Samantha Joanne Preston, Yvan R. Paitel, Ryan D. Datteri, Andrew James Summers, Rhythm Agarwal, Roger Carter, Hannah Walsh, Abhinaya Ramadugu, Maitreyee Ramesh Rao, Wei-Ting Chien
  • Publication number: 20230238455
    Abstract: A method for forming a high electron mobility transistor is disclosed. A substrate is provided. A channel layer is formed on the substrate. An electron supply layer is formed on the channel layer. A dielectric passivation layer is formed on the electron supply layer. A gate recess is formed into the dielectric passivation layer and the electron supply layer. A surface modification layer is conformally deposited on an interior surface of the gate recess. The surface modification layer is first subjected to the nitride treatment and is then subjected to the oxidation treatment. A P-type GaN layer is formed in the gate recess and on the surface modification layer.
    Type: Application
    Filed: March 31, 2023
    Publication date: July 27, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Wei Chang, Yao-Hsien Chung, Shih-Wei Su, Hao-Hsuan Chang, Ting-An Chien, Bin-Siang Tsai
  • Patent number: 11705505
    Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a sacrificial gate structure over an active region. A first spacer layer is formed along sidewalls and a top surface of the sacrificial gate structure. A first protection layer is formed over the first spacer layer. A second spacer layer is formed over the first protection layer. A third spacer layer is formed over the second spacer layer. The sacrificial gate structure is replaced with a replacement gate structure. The second spacer layer is removed to form an air gap between the first protection layer and the third spacer layer.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: July 18, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Ting Chien, Liang-Yin Chen, Yi-Hsiu Liu, Tsung-Lin Lee, Huicheng Chang
  • Patent number: 11695042
    Abstract: In an embodiment, a device includes: a gate structure on a channel region of a substrate; a gate mask on the gate structure, the gate mask including a first dielectric material and an impurity, a concentration of the impurity in the gate mask decreasing in a direction extending from an upper region of the gate mask to a lower region of the gate mask; a gate spacer on sidewalls of the gate mask and the gate structure, the gate spacer including the first dielectric material and the impurity, a concentration of the impurity in the gate spacer decreasing in a direction extending from an upper region of the gate spacer to a lower region of the gate spacer; and a source/drain region adjoining the gate spacer and the channel region.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: July 4, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Ting Chien, Wen-Yen Chen, Li-Ting Wang, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang
  • Patent number: 11688802
    Abstract: A method for forming a high electron mobility transistor is disclosed. A substrate is provided. A channel layer is formed on the substrate. An electron supply layer is formed on the channel layer. A dielectric passivation layer is formed on the electron supply layer. A gate recess is formed into the dielectric passivation layer and the electron supply layer. A surface modification layer is conformally deposited on an interior surface of the gate recess. The surface modification layer is then subjected to an oxidation treatment or a nitridation treatment. A P-type GaN layer is formed in the gate recess and on the surface modification layer.
    Type: Grant
    Filed: February 18, 2021
    Date of Patent: June 27, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Wei Chang, Yao-Hsien Chung, Shih-Wei Su, Hao-Hsuan Chang, Ting-An Chien, Bin-Siang Tsai
  • Patent number: 11688790
    Abstract: An HEMT includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer. The composition of the first III-V compound layer is different from the composition of the second III-V compound layer. A trench is disposed within the first III-V compound layer and the second III-V compound layer. The trench has a first corner and a second corner. The first corner and the second corner are disposed in the first III-V compound layer. A first dielectric layer contacts a sidewall of the first corner. A second dielectric layer contacts a sidewall of the second corner. The first dielectric layer and the second dielectric layer are outside of the trench. A gate is disposed in the trench. A source electrode and a drain electrode are respectively disposed at two sides of the gate. A gate electrode is disposed directly on the gate.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: June 27, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Wei Chang, Yao-Hsien Chung, Shih-Wei Su, Hao-Hsuan Chang, Da-Jun Lin, Ting-An Chien, Bin-Siang Tsai
  • Publication number: 20230145175
    Abstract: A high electron mobility transistor includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer. The composition of the first III-V compound layer is different from that of the second III-V compound layer. A trench is disposed within the first III-V compound layer and the second III-V compound layer. The trench has a first corner and a second corner. The first corner and the second corner are disposed in the first III-V compound layer. A first dielectric layer contacts a sidewall of the first corner. A second dielectric layer contacts a sidewall of the second corner. The first dielectric layer and the second dielectric layer are outside of the trench. A gate is disposed in the trench. A source electrode and a drain electrode are respectively disposed at two sides of the gate. A gate electrode is disposed on the gate.
    Type: Application
    Filed: January 3, 2023
    Publication date: May 11, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chih-Wei Chang, Yao-Hsien Chung, Shih-Wei Su, Hao-Hsuan Chang, Da-Jun Lin, Ting-An Chien, Bin-Siang Tsai
  • Patent number: 11646377
    Abstract: In accordance with some embodiments, a source/drain contact is formed by exposing a source/drain region through a first dielectric layer and a second dielectric layer. The second dielectric layer is recessed under the first dielectric layer, and a silicide region is formed on the source/drain region, wherein the silicide region has an expanded width.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: May 9, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Ting Chien, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11632889
    Abstract: A memory cell includes a first conductive line, a lower electrode, a carbon nano-tube (CNT) layer, a middle electrode, a resistive layer, a top electrode and a second conductive line. The first conductive line is disposed over a substrate. The lower electrode is disposed over the first conductive line. The carbon nano-tube (CNT) layer is disposed over the lower electrode. The middle electrode is disposed over the carbon nano-tube layer, thereby the lower electrode, the carbon nano-tube (CNT) layer and the middle electrode constituting a nanotube memory part. The resistive layer is disposed over the middle electrode. The top electrode is disposed over the resistive layer, thereby the middle electrode, the resistive layer and the top electrode constituting a resistive memory part. The second conductive line is disposed over the top electrode.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: April 18, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Bin-Siang Tsai, Ya-Jyuan Hung, Chin-Chia Yang, Ting-An Chien
  • Patent number: 11615848
    Abstract: A memory control method, a memory storage device, and a memory control circuit unit are provided. The memory control method includes: programming multiple first memory cells in a first physical erasing unit in a rewritable non-volatile memory module; and applying an electronic pulse to at least one word line in the rewritable non-volatile memory module. The at least one word line is coupled to multiple second memory cells in the first physical erasing unit. The second memory cells include the first memory cells. The electronic pulse is not configured to read, program, or erase the second memory cells.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: March 28, 2023
    Assignee: PHISON ELECTRONICS CORP.
    Inventors: Yu-Siang Yang, Wei Lin, An-Cheng Liu, Yu-Heng Liu, Chun-Hsi Lai, Ting-Chien Zhan
  • Publication number: 20230076799
    Abstract: An electronic device with a fingerprint sensor and a high resolution display adapted to each other includes a display and a fingerprint sensor. The display has display pixels. A transversal pitch P is formed between adjacent two of the display pixels. The fingerprint sensor senses a fingerprint of a finger disposed on or above the display. The fingerprint sensor is a BSI fingerprint sensor and includes a sensing chip and an optical module. The sensing chip has sensing cells each having a transversal dimension A. The optical module disposed between the sensing chip and the display has a magnification power M, where A x M ? P, and A > 5 µm.
    Type: Application
    Filed: July 8, 2020
    Publication date: March 9, 2023
    Inventors: BRUCE C. S. CHOU, Wan-Ting CHIEN
  • Patent number: 11561719
    Abstract: A flash memory control method, a flash memory storage device and a flash memory controller are provided. The method includes the following. A flash memory module is instructed to perform a data merge operation to copy first data in a first physical unit into at least one second physical unit. After the first data is copied and before the first physical unit is erased, another programming operation is performed on the first physical unit to change a data storage state of at least a part of memory cells in the first physical unit from a first state into a second state. After the first physical unit is programmed, an erase operation is performed on the first physical unit.
    Type: Grant
    Filed: April 27, 2021
    Date of Patent: January 24, 2023
    Assignee: PHISON ELECTRONICS CORP.
    Inventors: Yu-Siang Yang, Wei Lin, An-Cheng Liu, Yu-Heng Liu, Chun-Hsi Lai, Ting-Chien Zhan
  • Publication number: 20230017965
    Abstract: A magnetic tunnel junction (MTJ) device includes a bottom electrode, a reference layer, a tunnel barrier layer, a free layer and a top electrode. The bottom electrode and the top electrode are facing each other. The reference layer, the tunnel barrier layer and the free layer are stacked from the bottom electrode to the top electrode, wherein the free layer includes a first ferromagnetic layer, a spacer and a second ferromagnetic layer, wherein the spacer is sandwiched by the first ferromagnetic layer and the second ferromagnetic layer, wherein the spacer includes oxidized spacer sidewall parts, the first ferromagnetic layer includes first oxidized sidewall parts, and the second ferromagnetic layer includes second oxidized sidewall parts. The present invention also provides a method of manufacturing a magnetic tunnel junction (MTJ) device.
    Type: Application
    Filed: September 29, 2022
    Publication date: January 19, 2023
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Da-Jun Lin, Shih-Wei Su, Bin-Siang Tsai, Ting-An Chien
  • Publication number: 20220406629
    Abstract: In an embodiment, a pattern transfer processing chamber includes a pattern transfer processing chamber and a loading area external to the pattern transfer processing chamber. The loading area is configured to transfer a wafer to or from the pattern transfer processing chamber. The loading area comprises a first region including a loadport, a second region including a load-lock between the first region and the pattern transfer processing chamber, and an embedded baking chamber configured to heat a patterned photoresist on the wafer.
    Type: Application
    Filed: April 14, 2022
    Publication date: December 22, 2022
    Inventors: Chia-Cheng Chen, Chih-Kai Yang, Chun-Liang Chen, Wei-Ting Chien, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20220384606
    Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a sacrificial gate structure over an active region. A first spacer layer is formed along sidewalls and a top surface of the sacrificial gate structure. A first protection layer is formed over the first spacer layer. A second spacer layer is formed over the first protection layer. A third spacer layer is formed over the second spacer layer. The sacrificial gate structure is replaced with a replacement gate structure. The second spacer layer is removed to form an air gap between the first protection layer and the third spacer layer.
    Type: Application
    Filed: August 9, 2022
    Publication date: December 1, 2022
    Inventors: Wei-Ting Chien, Liang-Yin Chen, Yi-Hsiu Liu, Tsung-Lin Lee, Huicheng Chang
  • Publication number: 20220376089
    Abstract: In an embodiment, a device includes: a fin on a substrate, fin having a Si portion proximate the substrate and a SiGe portion distal the substrate; a gate stack over a channel region of the fin; a source/drain region adjacent the gate stack; a first doped region in the SiGe portion of the fin, the first doped region disposed between the channel region and the source/drain region, the first doped region having a uniform concentration of a dopant; and a second doped region in the SiGe portion of the fin, the second doped region disposed under the source/drain region, the second doped region having a graded concentration of the dopant decreasing in a direction extending from a top of the fin to a bottom of the fin.
    Type: Application
    Filed: July 28, 2022
    Publication date: November 24, 2022
    Inventors: Chia-Ling Chan, Liang-Yin Chen, Wei-Ting Chien
  • Patent number: 11508831
    Abstract: A semiconductor device and a method of forming the same are provided. The method includes forming a sacrificial gate structure over an active region. A first spacer layer is formed along sidewalls and a top surface of the sacrificial gate structure. A first protection layer is formed over the first spacer layer. A second spacer layer is formed over the first protection layer. A third spacer layer is formed over the second spacer layer. The sacrificial gate structure is replaced with a replacement gate structure. The second spacer layer is removed to form an air gap between the first protection layer and the third spacer layer.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: November 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Ting Chien, Liang-Yin Chen, Yi-Hsiu Liu, Tsung-Lin Lee, Huicheng Chang
  • Publication number: 20220365433
    Abstract: A fabricating method of reducing photoresist footing includes providing a silicon nitride layer. Later, a fluorination process is performed to graft fluoride ions onto a top surface of the silicon nitride layer. After the fluorination process, a photoresist is formed to contact the top surface of the silicon nitride layer. Finally, the photoresist is patterned to remove at least part of the photoresist contacting the silicon nitride layer.
    Type: Application
    Filed: May 11, 2021
    Publication date: November 17, 2022
    Inventors: Hao-Hsuan Chang, Da-Jun Lin, Yao-Hsien Chung, Ting-An Chien, Bin-Siang Tsai, Chih-Wei Chang, Shih-Wei Su, Hsu Ting, Sung-Yuan Tsai