Patents by Inventor Ana EGATZ-GOMEZ

Ana EGATZ-GOMEZ has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240068965
    Abstract: Methods and systems are provided for serial femtosecond crystallography for reducing the vast amount of waste of injected crystals practiced with traditional continuous flow injections. A micrometer-scale 3-D printed water-in-oil droplet generator device includes an oil phase inlet channel, an aqueous phase inlet channel, a droplet flow outlet channel, and two embedded non-contact electrodes. The inlet and outlet channels are connected internally at a junction. The electrodes comprise gallium metal injected within the 3-D printed device. Voltage across the electrodes generates water-in-oil droplets, determines a rate for a series of droplets, or triggers a phase shift in the droplets. An external trigger generates the droplets based on the frequency of an XFEL utilized in droplet detection, thereby synchronizing a series of droplets with x-ray pulses for efficient crystal detection. The generated droplets can be coupled to an SFX with XFEL experiment compatible with common liquid injector such as a GDVN.
    Type: Application
    Filed: November 7, 2023
    Publication date: February 29, 2024
    Inventors: Alexandra ROS, Daihyun KIM, Austin ECHELMEIER, Jorvani CRUZ VILLARREAL, Ana EGATZ-GOMEZ, Sebastian QUINTANA
  • Publication number: 20240012002
    Abstract: Described herein are systems and methods for a microfluidic immunoassay for in situ mass spectrometry analysis of intracellular protein biomarkers in tissue. In some embodiments, the tissue may comprise human brain tissue. In some embodiments, the protein biomarkers may comprise A? species comprising monomers and oligomers of A?1-42, A?1-40, A?1-39, A?2-43, or combinations thereof. In some embodiments, the systems and methods may comprise laser capture microdissection (LCM) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry.
    Type: Application
    Filed: June 15, 2023
    Publication date: January 11, 2024
    Inventors: Alexandra Ros, Jorvani Cruz Villarreal, Ana Egatz-Gomez, Todd Sandrin, Paul Coleman
  • Patent number: 11867644
    Abstract: Methods and systems are provided for serial femtosecond crystallography for reducing the vast amount of waste of injected crystals practiced with traditional continuous flow injections. A micrometer-scale 3-D printed water-in-oil droplet generator device includes an oil phase inlet channel, an aqueous phase inlet channel, a droplet flow outlet channel, and two embedded non-contact electrodes. The inlet and outlet channels are connected internally at a junction. The electrodes comprise gallium metal injected within the 3-D printed device. Voltage across the electrodes generates water-in-oil droplets, determines a rate for a series of droplets, or triggers a phase shift in the droplets. An external trigger generates the droplets based on the frequency of an XFEL utilized in droplet detection, thereby synchronizing a series of droplets with x-ray pulses for efficient crystal detection. The generated droplets can be coupled to an SFX with XFEL experiment compatible with common liquid injector such as a GDVN.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: January 9, 2024
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Alexandra Ros, Daihyun Kim, Austin Echelmeier, Jorvani Cruz Villarreal, Ana Egatz-Gomez, Sebastian Quintana
  • Publication number: 20230242412
    Abstract: Synthesizing upconverting nanoparticles includes heating a precursor solution comprising one or more rare earth salts, an alkali metal salt or alkaline earth salt, and a solvent comprising a plasticizer in a microwave reactor to yield a product mixture, and cooling the product mixture to yield the upconverting nanoparticles. Core-shell upconverting nanoparticles are synthesized by combining the upconverting nanoparticles with a precursor solution comprising one or more rare earth salts, an alkali metal salt or alkaline earth salt, and a solvent comprising a plasticizer to yield a nanoparticle mixture, heating the nanoparticle mixture in a microwave reactor to yield a product mixture, and cooling the product mixture to yield the core-shell upconverting nanoparticles.
    Type: Application
    Filed: April 6, 2023
    Publication date: August 3, 2023
    Inventors: Ana Egatz-Gomez, Alexandra Ros
  • Patent number: 11649173
    Abstract: Synthesizing upconverting nanoparticles includes heating a precursor solution comprising one or more rare earth salts, an alkali metal salt or alkaline earth salt, and a solvent comprising a plasticizer in a microwave reactor to yield a product mixture, and cooling the product mixture to yield the upconverting nanoparticles. Core-shell upconverting nanoparticles are synthesized by combining the upconverting nanoparticles with a precursor solution comprising one or more rare earth salts, an alkali metal salt or alkaline earth salt, and a solvent comprising a plasticizer to yield a nanoparticle mixture, heating the nanoparticle mixture in a microwave reactor to yield a product mixture, and cooling the product mixture to yield the core-shell upconverting nanoparticles.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: May 16, 2023
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Ana Egatz-Gomez, Alexandra Ros
  • Patent number: 11485632
    Abstract: A microfluidic device for use in a serial crystallography apparatus includes a modular 3D-printed nozzle having an inlet, an outlet, and a first snap engagement feature. The microfluidic device further includes a modular 3D-printed fiber holder having an outlet and a second snap engagement feature. The first snap engagement feature is configured to engage the second snap engagement feature to removably couple the nozzle to the fiber holder. The outlet of the fiber holder is aligned with the inlet of the nozzle when the first snap engagement feature is coupled to the second snap engagement feature.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: November 1, 2022
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY
    Inventors: Alexandra Ros, John Spence, Diandra Doppler, Garrett Nelson, Richard Kirian, Reza Nazari, Ana Egatz-Gomez, Mukul Sonker, Mohammad Rabbani
  • Publication number: 20220112079
    Abstract: A microfluidic device for use in a serial crystallography apparatus includes a nozzle having an inlet, an outlet, and a first snap engagement feature. The microfluidic device further includes a fiber holder having an outlet and a second snap engagement feature. The first snap engagement feature is configured to engage the second snap engagement feature to removably couple the nozzle to the fiber holder. The outlet of the fiber holder is aligned with the inlet of the nozzle when the first snap engagement feature is coupled to the second snap engagement feature.
    Type: Application
    Filed: October 8, 2021
    Publication date: April 14, 2022
    Inventors: Alexandra Ros, John Spence, Diandra Doppler, Garrett Nelson, Richard Kirian, Reza Nazari, Ana Egatz-Gomez, Mukul Sonker, Mohammad Rabbani
  • Publication number: 20210332294
    Abstract: Synthesizing upconverting nanoparticles includes heating a precursor solution comprising one or more rare earth salts, an alkali metal salt or alkaline earth salt, and a solvent comprising a plasticizer in a microwave reactor to yield a product mixture, and cooling the product mixture to yield the upconverting nanoparticles. Core-shell upconverting nanoparticles are synthesized by combining the upconverting nanoparticles with a precursor solution comprising one or more rare earth salts, an alkali metal salt or alkaline earth salt, and a solvent comprising a plasticizer to yield a nanoparticle mixture, heating the nanoparticle mixture in a microwave reactor to yield a product mixture, and cooling the product mixture to yield the core-shell upconverting nanoparticles.
    Type: Application
    Filed: April 22, 2021
    Publication date: October 28, 2021
    Inventors: Ana Egatz-Gomez, Alexandra Ros
  • Publication number: 20210302334
    Abstract: Methods and systems are provided for serial femtosecond crystallography for reducing the vast amount of waste of injected crystals practiced with traditional continuous flow injections. A micrometer-scale 3-D printed water-in-oil droplet generator device includes an oil phase inlet channel, an aqueous phase inlet channel, a droplet flow outlet channel, and two embedded non-contact electrodes. The inlet and outlet channels are connected internally at a junction. The electrodes comprise gallium metal injected within the 3-D printed device. Voltage across the electrodes generates water-in-oil droplets, determines a rate for a series of droplets, or triggers a phase shift in the droplets. An external trigger generates the droplets based on the frequency of an XFEL utilized in droplet detection, thereby synchronizing a series of droplets with x-ray pulses for efficient crystal detection. The generated droplets can be coupled to an SFX with XFEL experiment compatible with common liquid injector such as a GDVN.
    Type: Application
    Filed: April 1, 2021
    Publication date: September 30, 2021
    Inventors: Alexandra ROS, Daihyun KIM, Austin ECHELMEIER, Jorvani CRUZ VILLARREAL, Ana EGATZ-GOMEZ, Sebastian QUINTANA
  • Patent number: 10969350
    Abstract: Methods and systems are provided for serial femtosecond crystallography for reducing the vast amount of waste of injected crystals practiced with traditional continuous flow injections. A micrometer-scale 3-D printed water-in-oil droplet generator device includes an oil phase inlet channel, an aqueous phase inlet channel, a droplet flow outlet channel, and two embedded non-contact electrodes. The inlet and outlet channels are connected internally at a junction. The electrodes comprise gallium metal injected within the 3-D printed device. Voltage across the electrodes generates water-in-oil droplets, determines a rate for a series of droplets, or triggers a phase shift in the droplets. An external trigger generates the droplets based on the frequency of an XFEL utilized in droplet detection, thereby synchronizing a series of droplets with x-ray pulses for efficient crystal detection. The generated droplets can be coupled to an SFX with XFEL experiment compatible with common liquid injector such as a GDVN.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: April 6, 2021
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STAT
    Inventors: Alexandra Ros, Daihyun Kim, Austin Echelmeier, Jorvani Cruz Villarreal, Ana Egatz-Gomez, Sebastian Quintana
  • Publication number: 20200141886
    Abstract: Methods and systems are provided for serial femtosecond crystallography for reducing the vast amount of waste of injected crystals practiced with traditional continuous flow injections. A micrometer-scale 3-D printed water-in-oil droplet generator device includes an oil phase inlet channel, an aqueous phase inlet channel, a droplet flow outlet channel, and two embedded non-contact electrodes. The inlet and outlet channels are connected internally at a junction. The electrodes comprise gallium metal injected within the 3-D printed device. Voltage across the electrodes generates water-in-oil droplets, determines a rate for a series of droplets, or triggers a phase shift in the droplets. An external trigger generates the droplets based on the frequency of an XFEL utilized in droplet detection, thereby synchronizing a series of droplets with x-ray pulses for efficient crystal detection. The generated droplets can be coupled to an SFX with XFEL experiment compatible with common liquid injector such as a GDVN.
    Type: Application
    Filed: May 22, 2018
    Publication date: May 7, 2020
    Inventors: Alexandra ROS, Daihyun KIM, Austin ECHELMEIER, Jorvani VILLARREAL, Ana EGATZ-GOMEZ, Sebastian QUINTANA