Patents by Inventor Ana Gonzalez-Garcia

Ana Gonzalez-Garcia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10829691
    Abstract: In a first aspect, the present disclosure provides a method for making an inorganic thermoset resin, the method comprising: (a) mixing SiO2, H2O and a metallic hydroxide for generating an alkaline aqueous solution with pH from 10 to 14 comprising a metallic silicate, wherein said metallic hydroxide generates a first metallic oxide in the aqueous solution, (b) adding aluminum oxide (Al2O3) and silicon oxide (SiO2) to the alkaline aqueous solution comprising a metallic silicate generated in step (a) and (c) adding halloysite nanotubes (Al2Si2O5(OH)4) to the solution generated in step (b). The present disclosure further provides an inorganic thermoset resin obtainable by the method as defined in the first aspect of the disclosure.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: November 10, 2020
    Assignee: THE BOEING COMPANY
    Inventors: Ana Gonzalez-Garcia, Pedro Pablo Martin-Alonso, Nieves Lapena-Rey, Amelia Martinez-Alonso, Tomas Gonzalez-Rodriguez
  • Patent number: 10329197
    Abstract: A method for a curing cycle of an inorganic thermoset resin, the method comprising: (a) adding a hardener in a concentration from 18 to 30% by weight of the resin to said inorganic thermoset resin and (b) curing the resin at a temperature from 110 to 120° C. An inorganic thermoset resin, comprising a hardener in a concentration from 18 to 30% by weight of the resin. A vehicle interior panel, comprising a composite comprising a composite matrix of a natural fibre set within an inorganic thermoset resin.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: June 25, 2019
    Assignee: The Boeing Company
    Inventors: Ana Gonzalez-Garcia, Pedro Pablo Martin-Alonso, Nieves Lapena-Rey, Amelia Martinez-Alonso, Tomas Gonzalez Rodriguez
  • Publication number: 20190161680
    Abstract: In a first aspect, the present disclosure provides a method for making an inorganic thermoset resin, the method comprising: (a) mixing SiO2, H2O and a metallic hydroxide for generating an alkaline aqueous solution with pH from 10 to 14 comprising a metallic silicate, wherein said metallic hydroxide generates a first metallic oxide in the aqueous solution, (b) adding aluminum oxide (Al2O3) and silicon oxide (SiO2) to the alkaline aqueous solution comprising a metallic silicate generated in step (a) and (c) adding halloysite nanotubes (Al2Si2O5(OH)4) to the solution generated in step (b). The present disclosure further provides an inorganic thermoset resin obtainable by the method as defined in the first aspect of the disclosure.
    Type: Application
    Filed: January 30, 2019
    Publication date: May 30, 2019
    Inventors: Ana GONZALEZ-GARCIA, Pedro Pablo MARTIN-ALONSO, Nieves LAPENA-REY, Amelia MARTINEZ-ALONSO, Tomas GONZALEZ-RODRIGUEZ
  • Patent number: 10227530
    Abstract: In a first aspect, the present disclosure provides a method for making an inorganic thermoset resin, the method comprising: (a) mixing SiO2, H2O and a metallic hydroxide for generating an alkaline aqueous solution with pH from 10 to 14 comprising a metallic silicate, wherein said metallic hydroxide generates a first metallic oxide in the aqueous solution, (b) adding aluminum oxide (Al2O3) and silicon oxide (SiO2) to the alkaline aqueous solution comprising a metallic silicate generated in step (a) and (c) adding halloysite nanotubes (Al2Si2O5(OH)4) to the solution generated in step (b). The present disclosure further provides an inorganic thermoset resin obtainable by the method as defined in the first aspect of the disclosure.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: March 12, 2019
    Assignee: THE BOEING COMPANY
    Inventors: Ana Gonzalez-Garcia, Pedro Pablo Martin-Alonso, Nieves Lapena-Rey, Amelia Martinez-Alonso, Tomas Gonzalez-Rodriguez
  • Patent number: 9925728
    Abstract: The present invention relates to method of manufacturing an aircraft interior panel comprising a core sandwiched between first and second skins, wherein both of the first and second skins are formed from natural fibers containing non-halogenated fire-retardant and set within an inorganic thermoset resin, thereby forming a fire-resistant sustainable aircraft interior panel. The method comprises impregnating the natural fibers with non-halogenated fire retardant and an inorganic thermoset resin, and laying up the resin-impregnated natural fibers to sandwich the core. This stack is then cured by raising the temperature of the stack sufficient to initiate curing but without reaching the boiling point of water in the stack, holding the stack at that first temperature before raising the temperature again to reach the boiling point of water in the stack, before cooling the stack.
    Type: Grant
    Filed: January 7, 2015
    Date of Patent: March 27, 2018
    Assignee: The Boeing Company
    Inventors: Pedro P. Martin, Ana Gonzalez-Garcia, Nieves Lapena
  • Patent number: 9782944
    Abstract: The present invention relates to sandwich panels used as aircraft interior parts. In addition to provide a finishing function, the sandwich panels need to have certain mechanical properties and have sufficient fire resistance to retard the spread of fire within the vehicle interior. The present invention provides an aircraft interior panel with skins comprising natural fiber reinforced composites based either on an inorganic thermoset resin or a thermoplastic resin. Such panels provide the required flame and heat resistance, allow easy recycling and disposal, are cheaper and offer significant weight savings over conventional sandwich panels.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: October 10, 2017
    Assignee: THE BOEING COMPANY
    Inventors: Pedro P. Martin, Ana Gonzalez-Garcia, Nieves Lapena, Sergio Fita Bravo, Vicent Martinez Sanz, Ferran Marti Ferrer
  • Publication number: 20170204009
    Abstract: A method for a curing cycle of an inorganic thermoset resin, the method comprising: (a) adding a hardener in a concentration from 18 to 30% by weight of the resin to said inorganic thermoset resin and (b) curing the resin at a temperature from 110 to 120° C. An inorganic thermoset resin, comprising a hardener in a concentration from 18 to 30% by weight of the resin. A vehicle interior panel, comprising a composite comprising a composite matrix of a natural fibre set within an inorganic thermoset resin.
    Type: Application
    Filed: January 13, 2017
    Publication date: July 20, 2017
    Inventors: Ana Gonzalez-Garcia, Pedro Pablo Martin-Alonso, Nieves Lapena-Rey, Amelia Martinez-Alonso, Tomas Gonzalez Rodriguez
  • Publication number: 20170044440
    Abstract: In a first aspect, the present disclosure provides a method for making an inorganic thermoset resin, the method comprising: (a) mixing SiO2, H2O and a metallic hydroxide for generating an alkaline aqueous solution with pH from 10 to 14 comprising a metallic silicate, wherein said metallic hydroxide generates a first metallic oxide in the aqueous solution, (b) adding aluminum oxide (Al2O3) and silicon oxide (SiO2) to the alkaline aqueous solution comprising a metallic silicate generated in step (a) and (c) adding halloysite nanotubes (Al2Si2O5(OH)4) to the solution generated in step (b). The present disclosure further provides an inorganic thermoset resin obtainable by the method as defined in the first aspect of the disclosure.
    Type: Application
    Filed: August 3, 2016
    Publication date: February 16, 2017
    Inventors: Ana GONZALEZ-GARCIA, Pedro Pablo MARTIN-ALONSO, Nieves LAPENA-REY, Amelia MARTINEZ-ALONSO, Tomas GONZALEZ-RODRIGUEZ
  • Publication number: 20150190987
    Abstract: The present invention relates to fire resistant sustainable sandwich panels comprising a thermoplastic foam core in between outer skins made of natural fibres set within a natural thermoset biopolymer. The sandwich panels are provided with a fire resistant protective coating on an outer surface. This surface may be the surface facing the cabin when installed in an aircraft interior. Such fire resistant sustainable panels provide the required flame and heat resistance, have a high strength-to-weight ratio, low maintenance costs and are generally easily installed. Furthermore, the fire resistant sustainable sandwich panels allow easy recycling and are cheaper than conventional sandwich panels.
    Type: Application
    Filed: January 7, 2015
    Publication date: July 9, 2015
    Inventors: Ana Gonzalez-Garcia, Pedro P. Martin, Nieves Lapena, Maik Wonneberger
  • Publication number: 20150190973
    Abstract: The present invention relates to method of manufacturing an aircraft interior panel comprising a core sandwiched between first and second skins, wherein both of the first and second skins are formed from natural fibres containing non-halogenated fire-retardant and set within an inorganic thermoset resin, thereby forming a fire-resistant sustainable aircraft interior panel. The method comprises impregnating the natural fibres with non-halogenated fire retardant and an inorganic thermoset resin, and laying up the resin-impregnated natural fibres to sandwich the core. This stack is then cured by raising the temperature of the stack sufficient to initiate curing but without reaching the boiling point of water in the stack, holding the stack at that first temperature before raising the temperature again to reach the boiling point of water in the stack, before cooling the stack.
    Type: Application
    Filed: January 7, 2015
    Publication date: July 9, 2015
    Inventors: Pedro P. Martin, Ana Gonzalez-Garcia, Nieves Lapena
  • Publication number: 20120148824
    Abstract: The present invention relates to sandwich panels used as aircraft interior parts. In addition to provide a finishing function, the sandwich panels need to have certain mechanical properties and have sufficient fire resistance to retard the spread of fire within the vehicle interior. The present invention provides an aircraft interior panel with skins comprising natural fibre reinforced composites based either on an inorganic thermoset resin or a thermoplastic resin. Such panels provide the required flame and heat resistance, allow easy recycling and disposal, are cheaper and offer significant weight savings over conventional sandwich panels.
    Type: Application
    Filed: December 12, 2011
    Publication date: June 14, 2012
    Applicant: THE BOEING COMPANY
    Inventors: Pedro P. Martin, Ana Gonzalez-Garcia, Nieves Lapena, Sergio Fita-Bravo, Vicent Martinez-Sanz, Ferran Marti-Ferrer