Patents by Inventor Ana M. Yepes
Ana M. Yepes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240243477Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.Type: ApplicationFiled: February 15, 2024Publication date: July 18, 2024Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Marian Verhelst, Yossi Tsfati, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
-
Patent number: 11955732Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.Type: GrantFiled: December 27, 2022Date of Patent: April 9, 2024Assignee: Intel CorporationInventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
-
Publication number: 20230145401Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.Type: ApplicationFiled: December 27, 2022Publication date: May 11, 2023Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
-
Patent number: 11558158Abstract: A wireless communication device for communicating across a wireless communication channel includes one or more processors configured to determine whether a further device is generating a radio frequency interference at an operating frequency; transmit a request message to the further device requesting the further device vacate the operating frequency based on the determination that the further device is generating radio frequency interference; receive a response message from the further device; and generate an instruction based on the response message.Type: GrantFiled: November 10, 2020Date of Patent: January 17, 2023Assignee: Intel CorporationInventors: Michael Shusterman, John Fallin, Ana M. Yepes, Dong-Ho Han, Nasser A. Kurd, Tomer Levy, Ehud Reshef, Arik Gihon, Ido Ouzieli, Yevgeni Sabin, Maor Tal, Zhongsheng Wang, Amit Zeevi
-
Publication number: 20220384956Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.Type: ApplicationFiled: May 2, 2022Publication date: December 1, 2022Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asi, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
-
Patent number: 11424539Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.Type: GrantFiled: December 20, 2017Date of Patent: August 23, 2022Assignee: Intel CorporationInventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
-
Publication number: 20220150006Abstract: A wireless communication device for communicating across a wireless communication channel includes one or more processors configured to determine whether a further device is generating a radio frequency interference at an operating frequency; transmit a request message to the further device requesting the further device vacate the operating frequency based on the determination that the further device is generating radio frequency interference; receive a response message from the further device; and generate an instruction based on the response message.Type: ApplicationFiled: November 10, 2020Publication date: May 12, 2022Inventors: Michael SHUSTERMAN, John FALLIN, Ana M. YEPES, Dong-Ho HAN, Nasser A. KURD, Tomer LEVY, Ehud RESHEF, Arik GIHON, Ido OUZIELI, Yevgeni SABIN, Maor TAL, Zhongsheng WANG, Amit ZEEVI
-
Patent number: 11233018Abstract: Wireless modules having a semiconductor package attached to an antenna package is disclosed. The semiconductor package may house one or more electronic components as a single die package and/or a system in a package (SiP) implementation. The antenna package may be communicatively coupled to the semiconductor package using by one or more coupling pads. The antenna package may further have one or more radiating elements for transmitting and or receiving wireless signals. The antenna package and the semiconductor package may have dissimilar number of interconnect layers and/or dissimilar materials of construct.Type: GrantFiled: February 12, 2020Date of Patent: January 25, 2022Assignee: INTEL CORPORATIONInventors: Sidharth Dalmia, Ana M. Yepes, Pouya Talebbeydokhti, Miroslav Baryakh, Omer Asaf
-
Patent number: 10686482Abstract: A metal chassis for a mobile device is configured to transmit a signal of a wavelength. A first side of the chassis faces the inside of the mobile device and includes a first aperture that has a dimension that comprises a first subwavelength width of a slot in the chassis. A second side of the chassis faces free space and includes a second aperture that has a dimension that comprises a second subwavelength width of the slot in the chassis. A channel connects the first aperture and the second aperture. The slot has a length dimension and the channel may be centered along the length dimension. The channel is configured to support a transverse electromagnetic mode for propagation of the signal from the first aperture through the channel to the second aperture. As a part of a mobile device the chassis acts as a secondary radiator for the mobile device.Type: GrantFiled: December 21, 2016Date of Patent: June 16, 2020Assignee: Intel CorporationInventors: Yaniv Michaeli, Menashe Soffer, Omer Asaf, Ana M. Yepes, Manish A. Hiranandani, Anand S. Konanur
-
Publication number: 20200185342Abstract: Wireless modules having a semiconductor package attached to an antenna package is disclosed. The semiconductor package may house one or more electronic components as a single die package and/or a system in a package (SiP) implementation. The antenna package may be communicatively coupled to the semiconductor package using by one or more coupling pads. The antenna package may further have one or more radiating elements for transmitting and or receiving wireless signals. The antenna package and the semiconductor package may have dissimilar number of interconnect layers and/or dissimilar materials of construct.Type: ApplicationFiled: February 12, 2020Publication date: June 11, 2020Inventors: Sidharth DALMIA, Ana M. YEPES, Pouya TALEBBEYDOKHTI, Miroslav BARYAKH, Omer ASAF
-
Publication number: 20200091608Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.Type: ApplicationFiled: December 20, 2017Publication date: March 19, 2020Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
-
Patent number: 10566298Abstract: Wireless modules having a semiconductor package attached to an antenna package is disclosed. The semiconductor package may house one or more electronic components as a single die package and/or a system in a package (SiP) implementation. The antenna package may be communicatively coupled to the semiconductor package using by one or more coupling pads. The antenna package may further have one or more radiating elements for transmitting and or receiving wireless signals. The antenna package and the semiconductor package may have dissimilar number of interconnect layers and/or dissimilar materials of construct.Type: GrantFiled: April 1, 2016Date of Patent: February 18, 2020Assignee: Intel IP CorporationInventors: Sidharth Dalmia, Ana M. Yepes, Pouya Talebbeydokhti, Miroslav Baryakh, Omer Asaf
-
Patent number: 10522898Abstract: Generally, this disclosure provides systems, devices and methods for integration of millimeter wave antennas in platforms with reduced form factors while maintaining or improving antenna gain. An antenna assembly may include a first planar substrate; a ground plane disposed on the first planar substrate; a second planar substrate disposed on the ground plane; and an antenna radiation element disposed on the second planar substrate. The antenna radiation element may be configured to transmit a signal in the millimeter wave frequency region. The assembly may also include a via to provide a conductive path for the signal from a microstrip feed line, beneath the first planar substrate, to the antenna radiation element. The assembly may further include a dielectric layer disposed on the antenna radiation element to provide increased antenna gain under conditions of reduced air gap between the antenna radiation element and a structural element of an enclosing platform.Type: GrantFiled: August 30, 2016Date of Patent: December 31, 2019Assignee: INTEL CORPORATIONInventors: Min Keen Tang, Ana M. Yepes, Yaniv Michaeli, Menashe Soffer
-
Patent number: 10269716Abstract: Techniques and mechanisms for interconnecting circuitry disposed on a transparent substrate. In an embodiment, a multilayer circuit is bonded to the transparent substrate, the multilayer circuit including conductive traces that are variously offset at different respective levels from a side of the transparent substrate. Circuit components, such as packaged or unpackaged integrated circuit devices, are coupled each to respective input and/or output (IO) contacts of the multilayer circuit, where the conductive traces and the IO contacts interconnect the circuit components with each other. In another embodiment, the multilayer circuit is a flexible circuit that is bent to interconnect circuit components which are disposed on opposite respective sides of the transparent substrate.Type: GrantFiled: July 1, 2016Date of Patent: April 23, 2019Assignee: INTEL CORPORATIONInventors: Vijay Kasturi, Ana M. Yepes, Chung-Hao Chen, Bradley A. Jackson
-
Publication number: 20190058240Abstract: Generally, this disclosure provides systems, devices and methods for integration of millimeter wave antennas in platforms with reduced form factors while maintaining or improving antenna gain. An antenna assembly may include a first planar substrate; a ground plane disposed on the first planar substrate; a second planar substrate disposed on the ground plane; and an antenna radiation element disposed on the second planar substrate. The antenna radiation element may be configured to transmit a signal in the millimeter wave frequency region. The assembly may also include a via to provide a conductive path for the signal from a microstrip feed line, beneath the first planar substrate, to the antenna radiation element. The assembly may further include a dielectric layer disposed on the antenna radiation element to provide increased antenna gain under conditions of reduced air gap between the antenna radiation element and a structural element of an enclosing platform.Type: ApplicationFiled: August 30, 2016Publication date: February 21, 2019Inventors: MIN KEEN TANG, ANA M. YEPES, YANIV MICHAELI, MENASHE SOFFER
-
Publication number: 20190035749Abstract: Wireless modules having a semiconductor package attached to an antenna package is disclosed. The semiconductor package may house one or more electronic components as a single die package and/or a system in a package (SiP) implementation. The antenna package may be communicatively coupled to the semiconductor package using by one or more coupling pads. The antenna package may further have one or more radiating elements for transmitting and or receiving wireless signals. The antenna package and the semiconductor package may have dissimilar number of interconnect layers and/or dissimilar materials of construct.Type: ApplicationFiled: April 1, 2016Publication date: January 31, 2019Applicant: INTEL CORPORATIONInventors: Sidharth DALMIA, Ana M. YEPES, Pouya TALEBBEYDOKHTI, Miroslav BARYAKH, Omer ASAF
-
Publication number: 20180005947Abstract: Techniques and mechanisms for interconnecting circuitry disposed on a transparent substrate. In an embodiment, a multilayer circuit is bonded to the transparent substrate, the multilayer circuit including conductive traces that are variously offset at different respective levels from a side of the transparent substrate. Circuit components, such as packaged or unpackaged integrated circuit devices, are coupled each to respective input and/or output (IO) contacts of the multilayer circuit, where the conductive traces and the IO contacts interconnect the circuit components with each other. In another embodiment, the multilayer circuit is a flexible circuit that is bent to interconnect circuit components which are disposed on opposite respective sides of the transparent substrate.Type: ApplicationFiled: July 1, 2016Publication date: January 4, 2018Inventors: Vijay KASTURI, Ana M. YEPES, Chung-Hao CHEN, Bradley A. JACKSON
-
Publication number: 20170250720Abstract: A metal chassis for a mobile device is configured to transmit a signal of a wavelength. A first side of the chassis faces the inside of the mobile device and includes a first aperture that has a dimension that comprises a first subwavelength width of a slot in the chassis. A second side of the chassis faces free space and includes a second aperture that has a dimension that comprises a second subwavelength width of the slot in the chassis. A channel connects the first aperture and the second aperture. The slot has a length dimension and the channel may be centered along the length dimension. The channel is configured to support a transverse electromagnetic mode for propagation of the signal from the first aperture through the channel to the second aperture. As a part of a mobile device the chassis acts as a secondary radiator for the mobile device.Type: ApplicationFiled: December 21, 2016Publication date: August 31, 2017Inventors: Yaniv Michaeli, Menashe Soffer, Omer Asaf, Ana M. Yepes, Manish A. Hiranandani, Anand S. Konanur
-
Patent number: D796502Type: GrantFiled: December 26, 2015Date of Patent: September 5, 2017Assignee: Intel CorporationInventors: Reese Bowes, Sayan Lahiri, Bo Qiu, Jianfang Olena Zhu, Brian A. Wilk, Kevin J. Daniel, Ana M. Yepes, Guodong Zhang
-
Patent number: D801334Type: GrantFiled: December 26, 2015Date of Patent: October 31, 2017Assignee: Intel CorporationInventors: Reese Bowes, Sayan Lahiri, Bo Qiu, Jianfang Olena Zhu, Brian A. Wilk, Kevin J. Daniel, Ana M. Yepes, Guodong Zhang