Patents by Inventor Ana R. Menk

Ana R. Menk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130184727
    Abstract: Embodiments of the invention provide a vessel support system and a method of vessel harvesting. The system can include a cutting device, a catheter adapted to be inserted into a section of the vessel in order to support the vessel as the cutting device is advanced over the vessel, and a cannula adapted to be coupled to the vessel and adapted to receive the catheter as the catheter is inserted into the section of the vessel. The method can include orienting a cutting device coaxially with the cannula and the catheter and advancing the cutting device over the cannula, the catheter, and the section of the vessel in order to core out the section of the vessel and a portion of the surrounding tissue.
    Type: Application
    Filed: October 16, 2007
    Publication date: July 18, 2013
    Applicant: SCOTTSDALE MEDICAL DEVICES, INC.
    Inventors: Cynthia T. Clague, Michael J. Hobday, Raymond W. Usher, Roderick E. Briscoe, Katherine S. Jolly, Ana R. Menk, Christopher P. Olig, Eric A. Meyer, Steven C. Christian, Thomas P. Daigle, Robert H. Reetz, Jeffrey D. Sandstrom, James R. Keogh, Matthew D. Bonner, Scott E. Jahns, Philip J. Haarstad
  • Patent number: 8323336
    Abstract: A stented valve of two or more leaflets made of pericardium or other material having a relatively thin profile at the annulus. The leaflet surfaces are attached via chords to a stent frame, where the chords are positioned to mimic the native valve anatomy and functionality. In particular, the valves of one exemplary embodiment of the invention are sized to replace a mitral valve and therefore the chords are arranged to prevent prolapse of the leaflets into the atrium. The stented valve has a relatively short height at its annulus due to the positioning of the chords. In addition, the stented valve is capable of being crimped to a small enough size that it can be delivered to the implantation site via transcatheter delivery systems and methods.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: December 4, 2012
    Assignee: Medtronic, Inc.
    Inventors: Alexander J. Hill, Cynthia T. Clague, Carol Elsa Eberhardt, Ana R. Menk, Mark J. Capps, Billie J. Millwee, Janice Lynn Shay, Debra Ann Taitague, Joseph C. Morrow, Jerald Redmond
  • Patent number: 8303529
    Abstract: A cardiotomy and venous blood reservoir, including a housing assembly, a venous inlet port, a venous sub-assembly, a cardiotomy inlet port, and a cardiotomy sub-assembly. The housing forms a chamber. The venous sub-assembly includes a downtube and a bowl. A diameter of the downtube lumen increases to a downstream end. The bowl forms a floor surface for receiving flow from the lumen. The cardiotomy sub-assembly includes a dish and an inner post. The dish defines an aperture. The inner post extends from the dish and forms a guide surface received within the central aperture and forming an undulating curvature increasing to a diameter greater than the diameter of the central aperture. Cardiotomy liquid drops from the dish fall on to the undulating, closely positioned guide surface with minimal splashing.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: November 6, 2012
    Assignee: Medtronic, Inc.
    Inventors: Mark E. Wendler, Ana R. Menk, Eric R. Fox, Ningze Sun, Timothy D. Groen, Katherine S. Olig
  • Patent number: 8177735
    Abstract: A cardiotomy and venous blood reservoir including a housing assembly, a downtube, and a bowl. The housing assembly forms a chamber. The downtube extends from an inlet port to a downstream end within the chamber. A diameter of the tube lumen increases to the downstream end. The bowl forms a floor surface shoulder, intermediate segment, and protrusion. The shoulder circumferentially surrounds, and is spatially above, the downstream end. The intermediate segment extends radially inwardly and downwardly from the shoulder to a bottom face. The protrusion extends radially inwardly and upwardly from the bottom face to a center that is aligned with the lumen and below the downstream end. The flared inner diameter of the lumen reduces fluid velocity as venous blood enters the reservoir. The bowl floor surface gently receives the incoming venous blood at the protrusion, and smoothly guides the blood flow.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: May 15, 2012
    Assignee: Medtronic, Inc.
    Inventors: Mark E. Wendler, Ana R. Menk, Eric R. Fox, Ningze Sun, Timothy D. Groen, Walt L. Carpenter
  • Publication number: 20100268148
    Abstract: A cardiotomy and venous blood reservoir, including a housing assembly, a venous inlet port, a venous sub-assembly, a cardiotomy inlet port, and a cardiotomy sub-assembly. The housing forms a chamber. The venous sub-assembly includes a downtube and a bowl. A diameter of the downtube lumen increases to a downstream end. The bowl forms a floor surface for receiving flow from the lumen. The cardiotomy sub-assembly includes a dish and an inner post. The dish defines an aperture. The inner post extends from the dish and forms a guide surface received within the central aperture and forming an undulating curvature increasing to a diameter greater than the diameter of the central aperture. Cardiotomy liquid drops from the dish fall on to the undulating, closely positioned guide surface with minimal splashing.
    Type: Application
    Filed: April 30, 2010
    Publication date: October 21, 2010
    Applicant: Medtronic, Inc.
    Inventors: Mark E. Wendler, Ana R. Menk, Eric R. Fox, Ningze Sun, Timothy D. Groen, Katherine S. Olig
  • Publication number: 20100211028
    Abstract: A cardiotomy and venous blood reservoir including a housing assembly, a downtube, and a bowl. The housing assembly forms a chamber. The downtube extends from an inlet port to a downstream end within the chamber. A diameter of the tube lumen increases to the downstream end. The bowl forms a floor surface shoulder, intermediate segment, and protrusion. The shoulder circumferentially surrounds, and is spatially above, the downstream end. The intermediate segment extends radially inwardly and downwardly from the shoulder to a bottom face. The protrusion extends radially inwardly and upwardly from the bottom face to a center that is aligned with the lumen and below the downstream end. The flared inner diameter of the lumen reduces fluid velocity as venous blood enters the reservoir. The bowl floor surface gently receives the incoming venous blood at the protrusion, and smoothly guides the blood flow.
    Type: Application
    Filed: February 17, 2009
    Publication date: August 19, 2010
    Inventors: Mark E. Wendler, Ana R. Menk, Eric R. Fox, Ningze Sun, Timothy D. Groen, Walt L. Carpenter
  • Publication number: 20100121362
    Abstract: Embodiments of the invention provide a vessel support system and a method of vessel harvesting. The system can include a cutting device, a catheter adapted to be inserted into a section of the vessel in order to support the vessel as the cutting device is advanced over the vessel, and a cannula adapted to be coupled to the vessel and adapted to receive the catheter as the catheter is inserted into the section of the vessel. The method can include orienting a cutting device coaxially with the cannula and the catheter and advancing the cutting device over the cannula, the catheter, and the section of the vessel in order to core out the section of the vessel and a portion of the surrounding tissue.
    Type: Application
    Filed: January 19, 2010
    Publication date: May 13, 2010
    Applicant: SCOTTSDALE MEDICAL DEVICES, INC.
    Inventors: Cynthia T. Clague, Michael J. Hobday, Raymond W. Usher, Roderick E. Briscoe, Katherine S. Olig, Ana R. Menk, Christopher P. Olig, Eric A. Meyer, Steven C. Christian, Thomas P. Daigle, Robert H. Reetz, Jeffrey D. Sandstrom, James R. Keogh, Matthew D. Bonner, Scott E. Jahns, Philip J. Haarstad
  • Publication number: 20100114136
    Abstract: Embodiments of the invention provide a cutting device and method of vessel harvesting. The cutting device can include at least one tubular member, a cutting element, and a centering member. The cutting device can include at least one tubular member with a flexible section and a cutting element. The method of vessel harvesting can include spacing a cutting element of the cutting device from the vessel as the cutting element is advanced over the vessel.
    Type: Application
    Filed: January 15, 2010
    Publication date: May 6, 2010
    Applicant: SCOTTSDALE MEDICAL DEVICES, INC.
    Inventors: Cynthia T. Clague, Michael J. Hobday, Raymond W. Usher, Roderick E. Briscoe, Katherine S. Olig, Ana R. Menk, Christopher P. Olig, Eric A. Meyer, Steven C. Christian, Thomas P. Daigle, Robert H. Reetz, Jeffrey D. Sandstrom, James R. Keogh, Matthew D. Bonner, Scott E. Jahns, Philip J. Haarstad
  • Publication number: 20090281618
    Abstract: A stented valve of two or more leaflets made of pericardium or other material having a relatively thin profile at the annulus. The leaflet surfaces are attached via chords to a stent frame, where the chords are positioned to mimic the native valve anatomy and functionality. In particular, the valves of one exemplary embodiment of the invention are sized to replace a mitral valve and therefore the chords are arranged to prevent prolapse of the leaflets into the atrium. The stented valve has a relatively short height at its annulus due to the positioning of the chords. In addition, the stented valve is capable of being crimped to a small enough size that it can be delivered to the implantation site via transcatheter delivery systems and methods.
    Type: Application
    Filed: April 23, 2009
    Publication date: November 12, 2009
    Applicant: Medtronic, Inc.
    Inventors: Alexander J. Hill, Cynthia Clague, Carol Elsa Eberhardt, Ana R. Menk, Mark J. Capps, Billie J. Millwee, Janice Lynn Shay, Debra Ann Taitague, Joseph C. Morrow, Jerald Redmond
  • Publication number: 20080167669
    Abstract: Embodiments of the invention provide a vessel tensioning handle and method of placing tension on a section of a vessel being harvested. The handle can include a housing, a bobbin assembly, a vessel tensioning tape, and a tensioning device member. The tensioning device member can be coupled to a cannula that is coupled to the vessel. The method can include using the vessel tensioning tape to place tension on the section of the vessel as the cutting device is advanced over the vessel.
    Type: Application
    Filed: October 16, 2007
    Publication date: July 10, 2008
    Inventors: Cynthia T. Clague, Michael J. Hobday, Raymond W. Usher, Roderick E. Briscoe, Katherine S. Olig, Ana R. Menk, Christopher P. Olig, Eric A. Meyer, Steven C. Christian, Thomas P. Daigle, Robert H. Reetz, Jeffrey D. Sandstrom, James R. Keogh, Matthew D. Bonner, Scott E. Jahns, Philip J. Haarstad
  • Publication number: 20080161841
    Abstract: Embodiments of the invention provide a cutting device and method of vessel harvesting. The cutting device can include at least one tubular member, a cutting element, and a centering member. The cutting device can include at least one tubular member with a flexible section and a cutting element. The method of vessel harvesting can include spacing a cutting element of the cutting device from the vessel as the cutting element is advanced over the vessel.
    Type: Application
    Filed: October 16, 2007
    Publication date: July 3, 2008
    Inventors: Cynthia T. Clague, Michael J. Hobday, Raymond W. Usher, Roderick E. Briscoe, Katherine S. Olig, Ana R. Menk, Christopher P. Olig, Eric A. Meyer, Steven C. Christian, Thomas P. Daigle, Robert H. Reetz, Jeffrey D. Sandstrom, James R. Keogh, Matthew D. Bonner, Scott E. Jahns, Philip J. Haarstad
  • Publication number: 20080161843
    Abstract: Embodiments of the invention provide a vessel support system and a method of vessel harvesting. The system can include a cutting device, a catheter adapted to be inserted into a section of the vessel in order to support the vessel as the cutting device is advanced over the vessel, and a cannula adapted to be coupled to the vessel and adapted to receive the catheter as the catheter is inserted into the section of the vessel. The method can include orienting a cutting device coaxially with the cannula and the catheter and advancing the cutting device over the cannula, the catheter, and the section of the vessel in order to core out the section of the vessel and a portion of the surrounding tissue.
    Type: Application
    Filed: October 16, 2007
    Publication date: July 3, 2008
    Inventors: Cynthia T. Clague, Michael J. Hobday, Raymond W. Usher, Roderick E. Briscoe, Katherine S. Olig, Ana R. Menk, Christopher P. Olig, Eric A. Meyer, Steven C. Christian, Thomas P. Daigle, Robert H. Reetz, Jeffrey D. Sandstrom, James R. Keogh, Matthew D. Bonner, Scott E. Jahns, Philip J. Haarstad