Patents by Inventor Anadish Kumar Pal

Anadish Kumar Pal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8521029
    Abstract: An arrangement of gravity modulator and gravity-modulation receiver where photons or electromagnetic radiation is modulated electronically or mechanically to reach either a solid, liquid or mixed target possibly through or followed by a surrounding medium to produce gravity modulation in the target to effect gravity signaling which is received by a gravity-modulation receiver in or not in physical contact with the target. In the receiver, one or more piezo-electric transducer/s or quartz crystal/s receive the gravity modulation amplified for further signal processing. When not in physical contact with the target, the piezo-electric transducer/s is/are loaded with a resonator mass of natural resonant frequency either equal to, half, one third or one fifth of the frequency of the gravity modulator, the quartz crystal/s is/are gravity biased with a high-density metal piece along one direction of the oscillation mode of the crystal/s with natural resonant frequency similar to the resonator mass.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: August 27, 2013
    Inventor: Anadish Kumar Pal
  • Publication number: 20120174668
    Abstract: An arrangement of gravity modulator and gravity-modulation receiver where photons or electromagnetic radiation is modulated electronically or mechanically to reach either a solid, liquid or mixed target possibly through or followed by a surrounding medium to produce gravity modulation in the target to effect gravity signaling which is received by a gravity-modulation receiver in or not in physical contact with the target. In the receiver, one or more piezo-electric transducer/s or quartz crystal/s receive the gravity modulation amplified for further signal processing. When not in physical contact with the target, the piezo-electric transducer/s is/are loaded with a resonator mass of natural resonant frequency either equal to, half, one third or one fifth of the frequency of the gravity modulator, the quartz crystal/s is/are gravity biased with a high-density metal piece along one direction of the oscillation mode of the crystal/s with natural resonant frequency similar to the resonator mass.
    Type: Application
    Filed: March 11, 2011
    Publication date: July 12, 2012
    Inventor: ANADISH KUMAR PAL
  • Patent number: 7863785
    Abstract: An ac motor for high-torque drive has a transformer with a magnetic circuit with a central limb. Either the two ends or the two connected electrodes of the secondary winding of the transformer project at an angle to the longitudinal axis of the secondary winding; an armature rotor dielectrically bridges the two ends or the two connected electrodes, moving parallel to the longitudinal axis. The rotor forms two series-connected capacitors with the two ends or the two connected electrodes. An LC circuit is formed by the two capacitors in series to the total effective inductance of the power source, the electric transformer, the two ends or the connected electrodes and the armature. The impedance of the LC circuit is varied by the frequency of the power source supplying the primary winding of the transformer, in order to push required electric power from the power source to the series LC circuit.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: January 4, 2011
    Inventor: Anadish Kumar Pal
  • Patent number: 7830059
    Abstract: A linear motor for high velocity drive has a transformer which has a magnetic circuit with a central limb; the two ends of stacked unit- or fractional-turn secondary winding of the transformer project at an angle to the longitudinal axis of the central limb; an armature links the two ends, sliding parallel to the longitudinal axis. The armature has dielectrics to form two series-connected capacitors in conjunction with the two ends. The transformer's primary winding is connected to an ac or pulse power source. The resonant frequency for the LC circuit formed by the two capacitors in series to the total effective inductance of the power source, the electric transformer and the armature is determined. The frequency or the pulse rise time of the power source is matched to the resonant frequency, in order to supply adequate electric power from the power source to the series LC circuit.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: November 9, 2010
    Inventor: Anadish Kumar Pal
  • Patent number: 7637462
    Abstract: Air pressure distribution for airfoil lower and upper surfaces is utilized to divert airflow using ducts formed in space-curve shapes placed inside the airfoil volume, through span-wise located inlets from high pressure areas on the airfoil lower surface near the leading edge and through chord-wise spaced inlets on the side face of the airfoil wing tip correspondingly to the side face of the airfoil wing tip through chord-wise spaced outlets on the side face of the airfoil wing tip and to span-wise located outlets to the low pressure areas on the airfoil upper surface. Triboelectric materials on the wing surfaces are employed to static charge the air in drag. Inside the ducts, the employment of either triboelectric linings and materials, or HV-supplied electrodes, or both, help to static charge the diverted air flow to and from the airfoil wing tip side face to diffuse wing tip vortex core early.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: December 29, 2009
    Inventor: Anadish Kumar Pal
  • Patent number: 7541563
    Abstract: A hollow cylinder has an electromagnet to hold back a canister and either an induction heating linear actuator or a firing pin to ignite the primer-containing combustive material inside the canister to eject a locked piston from the cylinder. There is a motor-included turbogenerator around the cylinder, which converts the energy of the post-combustion gases into electricity to get stored and to power an integrated or separate annular stator assembly to give the ejected piston a rotatory motion for stability in projectile motion. Another device has a helically arranged, multi-pole permanent magnet assembly annularly integrated around the cylinder to give the ejected piston a rotatory motion for stability in projectile motion. In other forms, an annular stator assembly around the cylinder is supplied with switched, externally generated electric power without either a turbogenerator or the motor-included turbogenerator to respectively produce electricity or to provide gyroscopic stability to the cylinder.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: June 2, 2009
    Inventor: Anadish Kumar Pal
  • Publication number: 20090045682
    Abstract: A linear motor for high velocity drive has a transformer which has a magnetic circuit with a central limb; the two ends of stacked unit- or fractional-turn secondary winding of the transformer project at an angle to the longitudinal axis of the central limb; an armature links the two ends, sliding parallel to the longitudinal axis. The armature has dielectrics to form two series-connected capacitors in conjunction with the two ends. The transformer's primary winding is connected to an ac or pulse power source. The resonant frequency for the LC circuit formed by the two capacitors in series to the total effective inductance of the power source, the electric transformer and the armature is determined. The frequency or the pulse rise time of the power source is matched to the resonant frequency, in order to supply adequate electric power from the power source to the series LC circuit.
    Type: Application
    Filed: August 11, 2008
    Publication date: February 19, 2009
    Inventor: Anadish Kumar Pal
  • Publication number: 20090039824
    Abstract: An ac motor for high-torque drive has a transformer with a magnetic circuit with a central limb. Either the two ends or the two connected electrodes of the secondary winding of the transformer project at an angle to the longitudinal axis of the secondary winding; an armature rotor dielectrically bridges the two ends or the two connected electrodes, moving parallel to the longitudinal axis. The rotor forms two series-connected capacitors with the two ends or the two connected electrodes. An LC circuit is formed by the two capacitors in series to the total effective inductance of the power source, the electric transformer, the two ends or the connected electrodes and the armature. The impedance of the LC circuit is varied by the frequency of the power source supplying the primary winding of the transformer, in order to push required electric power from the power source to the series LC circuit.
    Type: Application
    Filed: July 31, 2008
    Publication date: February 12, 2009
    Inventor: Anadish Kumar Pal
  • Patent number: 7474020
    Abstract: Energy conversion devices employing gases and/or liquids as medium, constructed with a hollow, preferably toroidal cylinder having two ports and two, or more, identical ferromagnetic pistons moveably sealing the hollow cylinder. Movements of the pistons are electromagnetically selectable from the outside of the cylinder to either impart varying unidirectional forces on the medium and/or to influence a magnetic circuit placed outside the cylinder for the generation of motive or electromotive forces. In a pump, a compressor and an externally heated engine, the selective movement of the pistons always maintains a piston between the two ports. In an internal-combustion engine, addition is made of more pistons and one piston is selectively stopped and approached by the adjacent piston, compressing a gaseous mixture to effect combustion; electronic detection of the combustion allows the rapid electromagnetic release of the stopped piston and stops the adjacent piston which was compressing prior to the combustion.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: January 6, 2009
    Inventor: Anadish Kumar Pal
  • Publication number: 20070252047
    Abstract: Air pressure distribution for airfoil lower and upper surfaces is utilized to divert airflow using ducts formed in space-curve shapes placed inside the airfoil volume, through span-wise located inlets from high pressure areas on the airfoil lower surface near the leading edge and through chord-wise spaced inlets on the side face of the airfoil wing tip correspondingly to the side face of the airfoil wing tip through chord-wise spaced outlets on the side face of the airfoil wing tip and to span-wise located outlets to the low pressure areas on the airfoil upper surface. Triboelectric materials on the wing surfaces are employed to static charge the air in drag. Inside the ducts, the employment of either triboelectric linings and materials, or HV-supplied electrodes, or both, help to static charge the diverted air flow to and from the airfoil wing tip side face to diffuse wing tip vortex core early.
    Type: Application
    Filed: August 25, 2006
    Publication date: November 1, 2007
    Inventor: Anadish Kumar Pal
  • Publication number: 20070246611
    Abstract: Triboelectric treatment of or addition to a wing tip and an airfoil upper and lower surfaces is selectively done to electrostatically mutually charge the wing tip and the airfoil upper and lower surfaces with the atmospheric air frictionally coming in contact, in order to reduce trailing-edge vorticity and to promote interlayer mixing in the downwash. Electrostatic forces impede air rollup around the wing tip by first pulling the rolling up air from the airfoil lower surface to the wing tip side face, holding, charging and then repelling the rolling up air to the airfoil upper surface. Triboelectric layers with opposite charges, stacked chord-wise or thickness-wise, form flat and rounded wing tips for vorticity and BVI-noise reduction. For similar effects, opposite triboelectric layers, stacked span-wise, form a rounded wing tip. Lining of thick trailing edge of an airfoil is done with a triboelectric beading to reduce trailing-edge vorticity and form drag.
    Type: Application
    Filed: August 25, 2006
    Publication date: October 25, 2007
    Inventor: Anadish Kumar Pal
  • Patent number: 7284628
    Abstract: A vehicle with zero turning radius employing a minimum of two generally parallel matching annular wheels mounted with independent pneumatic toroidal suspensions fixed coaxially on a chassis. The wheels have mounted on their inner hub sides frictional linings along which run a respectively equal number of circumferentially distributed truncated-bicone-shaped rotors of brush-less dc motors with stator shafts fixed on to the axles of the wheels. Addition of a number of large holonomic wheels in tandem on either side of the two generally parallel wheels makes the vehicle longer and more stable. The large holonomic wheels have tires formed by a toroidal unanimity of disc-like rollers with magnetic or electromagnetic elements radially distributed evenly to make each disc-like roller rotate or resist rotation perpendicular to the holonomic wheel axis by acting as a rotor to motor stator windings attached to the chassis in proximity with the ground-engaging portion of the tire.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: October 23, 2007
    Inventor: Anadish Kumar Pal
  • Patent number: 7170047
    Abstract: A single-, two- or three-axis opto-electronic encoder, or error-inputting device, with an optical scale which is overall cylindrical, spherical or volumetric, as opposed to extant planar, circular optical scales; mostly parallel rays of light enter from the cylindrical or spherical surface of the scale, travel, with or without being modulated in intensity due to rotation/rotations of, or distortion/distortions in, the scale, along elliptical and/or circular sectional planes of the scale and exit to fall upon an obstructing opto-electronic sensor or a plurality of such sensors.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: January 30, 2007
    Inventor: Anadish Kumar Pal
  • Patent number: 7017696
    Abstract: A two-wheel electric vehicle with ringlike, large, powered parallel wheels, in which at least one ringlike wheel is driven by a large toroidal electric motor. The fully circular rotor of the large toroidal electric motor is integrated with the hub of the ringlike wheel, while the circular or semi-circular toroidal stator is joined to the body of the two-wheel electric vehicle, the ringlike wheel and the toroidal electric motor having a common bearing. The electric power source to drive the toroidal electric motor is located near the ground-facing portion of the vehicle body. An opening is formed in the internal circular area of the toroidal stator, to allow the entry and exit of the passengers of the vehicle. A similar small vehicle with parallel, coaxial wheels allows the occupant of the small vehicle to travel, seated either facing the conventional front or the rear of the small vehicle.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: March 28, 2006
    Inventor: Anadish Kumar Pal
  • Publication number: 20040182625
    Abstract: This electric motor vehicle is unique because it has just two wheels parallel to one another. Steering is achieved by the differential rotation of the two wheels with respect to one another—reducing the turning radius of this vehicle to the mere distance between the centres of the ground contact areas of the two tyres. Traction is by two permanent magnet AC motors—the stators on the axle circumference and the rotors on the inside of the wheel hubs. The outer circumference of the hollow axle which doubles up as the vehicle shell; is more than half of the maximum outer circumference of the tyre on the wheel. The heavy-weight electrical energy storage devices, mostly electrical accumulators, are positioned at the bottom of the hollow axle-shell. This brings down the centre of gravity well below the common geometrical centre of the two parallel wheels; providing inertial stability to the vehicle shell, when torque is applied by the wheel motor.
    Type: Application
    Filed: January 12, 2001
    Publication date: September 23, 2004
    Inventor: Anadish Kumar Pal
  • Patent number: 6717300
    Abstract: A method of determining an angular movement of an induction motor involving steps of using the hardware of the induction motor as a low-power alternator producing alternating-current output with a frequency and voltage proportional to the rpm of the induction motor during the periods of planned or accidental interruption of electric power supply to the motor by utilizing the property of the induction motor acting as a low-power alternator due to the residual magnetism in the ferromagnetic circuit of the motor's squirrel-cage rotor. The method includes providing a set of electromagnetically operated changeover switches so that the low-power signal from the induction motor does not sink in the low impedance of the mains power.
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: April 6, 2004
    Inventor: Anadish Kumar Pal
  • Publication number: 20020047350
    Abstract: In order to determine the angular movement of an induction motor, it is generally necessary to connect some kind of sensor in the form of a tachogernerator, resolver or encoder. Some variable-speed drives determine the angular movement with the help of the distortion in the waveshape generated by the drive when approaching a pole inside the induction motor. This new method of sensing is different in two ways: One, it uses the hardware of induction motor itself as a low-power alternator producing alternating-current output of frequency and voltage proportional to the rpm of the induction motor. Two, this method only works when the mains supply to the motor is removed either in a planned manner or accidentally. The method of self tachogeneration by an induction motor has been successfully utilized in the implementation of an uninterrupted power supply to keep supplying oil to a hydrostatic bearing in the case of sudden power failure.
    Type: Application
    Filed: August 21, 2001
    Publication date: April 25, 2002
    Inventor: Anadish Kumar Pal