Patents by Inventor Anagha Deshmane

Anagha Deshmane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11179052
    Abstract: Example embodiments associated with characterizing a sample using NMR fingerprinting are described. One example NMR apparatus includes an NMR logic that repetitively and variably samples a (k, t, E) space associated with an object to acquire a set of NMR signals that are associated with different points in the (k, t, E) space. Sampling is performed with t and/or E varying in a non-constant way. The NMR apparatus may also include a signal logic that produces an NMR signal evolution from the NMR signals and a characterization logic that characterizes a tissue in the object as a result of comparing acquired signals to reference signals. Example embodiments facilitate distinguishing diseased tissue from healthy tissue based on tissue component fractions identified using the NMR fingerprinting.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: November 23, 2021
    Assignee: Case Western Reserve University
    Inventors: Mark A. Griswold, Anagha Deshmane, Jeffrey Sunshine
  • Patent number: 11169235
    Abstract: A method of processing magnetic resonance (MR) data of a sample under investigation, includes the steps of providing the MR data being collected with an MRI scanner apparatus, and subjecting the MR data to a multi-parameter nonlinear regression procedure being based on a non-linear MR model and employing a set of input parameters, wherein the regression procedure results in creating a parameter map of model parameters of the sample, wherein the input parameters (initial values and possibly boundaries) of the regression procedure are estimated by a machine learning based estimation procedure applied to the MR data. The machine learning based estimation procedure preferably includes at least one of at least one neural network and a support vector machine. Furthermore, an MRI scanner apparatus is described.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: November 9, 2021
    Assignees: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e. V., Eberhard Karls Universitaet Tuebingen
    Inventors: Moritz Zaiss, Anagha Deshmane, Klaus Scheffler
  • Patent number: 11079448
    Abstract: A system and method is provided for correcting receiver bias during quantitative proton density mapping with magnetic resonance fingerprinting (MRF). The method comprises acquiring MRF data from a region of interest in a subject by performing a pulse sequence using a series of varied sequence blocks to elicit a series of signal evolutions. The method further comprises comparing the MRF data to a MRF dictionary to simultaneously map proton density and another tissue property from the region of interest, the proton density map having a proton density signal and a receiver sensitivity profile signal. The method also includes quantifying the proton density signal and the receiver sensitivity profile signal using parameters provided by the proton density map and the tissue property map, and generating a quantitative map from the region of interest based on the proton density signal.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: August 3, 2021
    Assignee: Case Western Reserve University
    Inventors: Mark A. Griswold, Anagha Deshmane
  • Publication number: 20200072931
    Abstract: A method of processing magnetic resonance (MR) data of a sample under investigation, includes the steps of providing the MR data being collected with an MRI scanner apparatus, and subjecting the MR data to a multi-parameter nonlinear regression procedure being based on a non-linear MR model and employing a set of input parameters, wherein the regression procedure results in creating a parameter map of model parameters of the sample, wherein the input parameters (initial values and possibly boundaries) of the regression procedure are estimated by a machine learning based estimation procedure applied to the MR data. The machine learning based estimation procedure preferably includes at least one of at least one neural network and a support vector machine. Furthermore, an MRI scanner apparatus is described.
    Type: Application
    Filed: August 29, 2019
    Publication date: March 5, 2020
    Inventors: Moritz ZAISS, Anagha DESHMANE, Klaus SCHEFFLER
  • Patent number: 10527698
    Abstract: Apparatus, methods, and other embodiments associated with NMR fingerprinting are described. One example NMR apparatus includes an NMR logic that repetitively and variably samples a (k, t, E) space associated with an object to acquire a set of NMR signals that are associated with different points in the (k, t, E) space. Sampling is performed with t and/or E varying in a non-constant way. The NMR apparatus may also include a signal logic that produces an NMR signal evolution from the NMR signals, and a characterization logic that characterizes a resonant species in the object as a result of comparing acquired signals to reference signals. The NMR signal evolution may be assigned to a cluster based on the characterization of the resonant species. Cluster overlay maps may be produced simultaneously based, at least in part, on the clustering. The clusters may be associated with different tissue types.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: January 7, 2020
    Assignee: Case Western Reserve University
    Inventors: Mark A. Griswold, Yun Jiang, Dan Ma, Anagha Deshmane, Chaitra Badve, Vikas Gulani, Jeffrey L. Sunshine
  • Publication number: 20190353718
    Abstract: A system and method is provided for correcting receiver bias during quantitative proton density mapping with magnetic resonance fingerprinting (MRF). The method comprises acquiring MRF data from a region of interest in a subject by performing a pulse sequence using a series of varied sequence blocks to elicit a series of signal evolutions. The method further comprises comparing the MRF data to a MRF dictionary to simultaneously map proton density and another tissue property from the region of interest, the proton density map having a proton density signal and a receiver sensitivity profile signal. The method also includes quantifying the proton density signal and the receiver sensitivity profile signal using parameters provided by the proton density map and the tissue property map, and generating a quantitative map from the region of interest based on the proton density signal.
    Type: Application
    Filed: November 15, 2017
    Publication date: November 21, 2019
    Inventors: Mark A. Griswold, Anagha Deshmane
  • Patent number: 10261154
    Abstract: Apparatus, methods, and other embodiments associated with NMR fingerprinting are described. One example NMR apparatus includes an NMR logic that repetitively and variably samples a (k, t, E) space associated with an object to acquire a set of NMR signals that are associated with different points in the (k, t, E) space. Sampling is performed with t and/or E varying in a non-constant way. The NMR apparatus may also include a signal logic that produces an NMR signal evolution from the NMR signals, and a characterization logic that characterizes a resonant species in the object as a result of comparing acquired signals to reference signals. The NMR signal evolution may be assigned to a cluster based on the characterization of the resonant species. Cluster overlay maps may be produced simultaneously based, at least in part, on the clustering. The clusters may be associated with different tissue types.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: April 16, 2019
    Assignee: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Mark Griswold, Yun Jiang, Dan Ma, Anagha Deshmane, Chaitra Badve, Vikas Gulani, Jeffrey L Sunshine
  • Publication number: 20190046052
    Abstract: Example embodiments associated with characterizing a sample using NMR fingerprinting are described. One example NMR apparatus includes an NMR logic that repetitively and variably samples a (k, t, E) space associated with an object to acquire a set of NMR signals that are associated with different points in the (k, t, E) space. Sampling is performed with t and/or E varying in a non-constant way. The NMR apparatus may also include a signal logic that produces an NMR signal evolution from the NMR signals and a characterization logic that characterizes a tissue in the object as a result of comparing acquired signals to reference signals. Example embodiments facilitate distinguishing diseased tissue from healthy tissue based on tissue component fractions identified using the NMR fingerprinting.
    Type: Application
    Filed: October 15, 2018
    Publication date: February 14, 2019
    Inventors: Mark A. Griswold, Anagha Deshmane, Jeffrey Sunshine
  • Publication number: 20180372825
    Abstract: Apparatus, methods, and other embodiments associated with NMR fingerprinting are described. One example NMR apparatus includes an NMR logic that repetitively and variably samples a (k, t, E) space associated with an object to acquire a set of NMR signals that are associated with different points in the (k, t, E) space. Sampling is performed with t and/or E varying in a non-constant way. The NMR apparatus may also include a signal logic that produces an NMR signal evolution from the NMR signals, and a characterization logic that characterizes a resonant species in the object as a result of comparing acquired signals to reference signals. The NMR signal evolution may be assigned to a cluster based on the characterization of the resonant species. Cluster overlay maps may be produced simultaneously based, at least in part, on the clustering. The clusters may be associated with different tissue types.
    Type: Application
    Filed: August 3, 2018
    Publication date: December 27, 2018
    Inventors: Mark A. Griswold, Yun Jiang, Dan Ma, Anagha Deshmane, Chaitra Badve, Vikas Gulani, Jeffrey L. Sunshine
  • Patent number: 10143389
    Abstract: Example embodiments associated with characterizing a sample using NMR fingerprinting are described. One example NMR apparatus includes an NMR logic that repetitively and variably samples a (k, t, E) space associated with an object to acquire a set of NMR signals that are associated with different points in the (k, t, E) space. Sampling is performed with t and/or E varying in a non-constant way. The NMR apparatus may also include a signal logic that produces an NMR signal evolution from the NMR signals and a characterization logic that characterizes a tissue in the object as a result of comparing acquired signals to reference signals. Example embodiments facilitate distinguishing diseased tissue from healthy tissue based on tissue component fractions identified using the NMR fingerprinting.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: December 4, 2018
    Assignee: CASE WESTERN RESERVE UNIVERSITY
    Inventors: Mark Griswold, Anagha Deshmane, Jeffrey Sunshine
  • Patent number: 9417306
    Abstract: Apparatus, methods, and other embodiments associated with magnetic resonance (MR) trajectory correcting using GRAPPA operator gridding (GROG) are described. One example method includes identifying an on angle or regular portion of a projection in an MR trajectory and then computing base GROG weights for that portion. The example method includes identifying a shift direction and a shift amount for the projection. The shift direction is configured to shift the projection towards a desired point in k-space and the shift amount is configured to shift the projection by a desired amount in the shift direction. With a shift direction and amount available, the example method corrects for a gradient delay by manipulating the MR source signal data using the shift direction and the shift amount. In one embodiment, a gradient delay can be determined and used to calibrate an MRI apparatus.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: August 16, 2016
    Assignee: Case Western Reserve University
    Inventors: Mark Griswold, Nicole Seiberlich, Anagha Deshmane
  • Publication number: 20150301144
    Abstract: Example embodiments associated with characterizing a sample using NMR fingerprinting are described. One example NMR apparatus includes an NMR logic that repetitively and variably samples a (k, t, E) space associated with an object to acquire a set of NMR signals that are associated with different points in the (k, t, E) space. Sampling is performed with t and/or E varying in a non-constant way. The NMR apparatus may also include a signal logic that produces an NMR signal evolution from the NMR signals and a characterization logic that characterizes a tissue in the object as a result of comparing acquired signals to reference signals. Example embodiments facilitate distinguishing diseased tissue from healthy tissue based on tissue component fractions identified using the NMR fingerprinting.
    Type: Application
    Filed: April 9, 2015
    Publication date: October 22, 2015
    Inventors: Mark Griswold, Anagha Deshmane, Jeffrey Sunshine
  • Publication number: 20150301141
    Abstract: Apparatus, methods, and other embodiments associated with NMR fingerprinting are described. One example NMR apparatus includes an NMR logic that repetitively and variably samples a (k, t, E) space associated with an object to acquire a set of NMR signals that are associated with different points in the (k, t, E) space. Sampling is performed with t and/or E varying in a non-constant way. The NMR apparatus may also include a signal logic that produces an NMR signal evolution from the NMR signals, and a characterization logic that characterizes a resonant species in the object as a result of comparing acquired signals to reference signals. The NMR signal evolution may be assigned to a cluster based on the characterization of the resonant species. Cluster overlay maps may be produced simultaneously based, at least in part, on the clustering. The clusters may be associated with different tissue types.
    Type: Application
    Filed: April 21, 2014
    Publication date: October 22, 2015
    Inventors: Mark Griswold, Yun Jiang, Dan Ma, Anagha Deshmane, Chaitra Badve, Vikas Gulani
  • Publication number: 20130271137
    Abstract: Apparatus, methods, and other embodiments associated with magnetic resonance (MR) trajectory correcting using GRAPPA operator gridding (GROG) are described. One example method includes identifying an on angle or regular portion of a projection in an MR trajectory and then computing base GROG weights for that portion. The example method includes identifying a shift direction and a shift amount for the projection. The shift direction is configured to shift the projection towards a desired point in k-space and the shift amount is configured to shift the projection by a desired amount in the shift direction. With a shift direction and amount available, the example method corrects for a gradient delay by manipulating the MR source signal data using the shift direction and the shift amount. In one embodiment, a gradient delay can be determined and used to calibrate an MRI apparatus.
    Type: Application
    Filed: April 12, 2012
    Publication date: October 17, 2013
    Applicant: Case Western Reserve University
    Inventors: Mark Griswold, Nicole Seiberlich, Anagha Deshmane