Patents by Inventor Anand Mohan Pappu

Anand Mohan Pappu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10951176
    Abstract: A transconductance circuit comprises a first transistor, a second transistor, a first source-degeneration device, a second source-degeneration device, a first feedback device, and a second feedback device. The gate node of the first transistor is coupled to a source node of the second transistor via the first feedback device. The gate node of the second transistor is coupled to a source node of the second transistor via the second feedback device. The source node of the first transistor is coupled to a reference voltage via the first source-degeneration device. The source node of the second transistor is coupled to the reference voltage via the second source-degeneration device.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: March 16, 2021
    Inventors: Anand Mohan Pappu, Ranjit Kumar Guntreddi, Madhusudan Govindarajan, Pranjal Pandey
  • Patent number: 10727861
    Abstract: An analog-to-digital convertor circuit converts the output of a loop filter circuit to a digital signal. A random sequence generation circuit generates a random sequence. Adder circuitry adds the random sequence to the digital signal to generate a randomized digital signal. Noise transfer function impulse response detection circuitry processes the randomized digital signal and the random sequence to determine a noise transfer function impulse response. Loop filter configuration circuitry configures the loop filter circuit based on the noise transfer function impulse response. The random sequence generation circuit may comprises a high-pass sigma delta modulator. The noise transfer function impulse response detection circuitry may determine the noise transfer function impulse response, and the loop filter configuration circuitry may configure the loop filter based on the noise transfer function impulse response.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: July 28, 2020
    Assignee: MaxLinear, Inc.
    Inventors: Chandrajit Debnath, Abhishek Ghosh, Rishi Mathur, Anand Mohan Pappu
  • Patent number: 10615815
    Abstract: An analog-to-digital converter circuit comprises code-shuffling circuitry, a plurality of digital-to-analog converter circuits, a plurality of difference circuits, and a plurality of latch circuits. The code-shuffling circuitry is operable to shuffle a plurality of digital codes among a plurality of its outputs. The plurality of digital-to-analog converter circuits are operable to convert a digital code on the respective one of the outputs to a corresponding one of a plurality of analog reference voltages. The plurality of difference circuits is operable to generate a respective one of a plurality of difference signals corresponding to a difference between an input voltage and a respective one of the plurality of reference voltages. The plurality of latch circuits is operable to latch a respective one of the plurality of difference signals to a corresponding one of a plurality of digital values.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: April 7, 2020
    Assignee: MAXLINEAR, INC.
    Inventors: Rishi Mathur, Chandrajit Debnath, Abhishek Ghosh, Anand Mohan Pappu
  • Publication number: 20190379390
    Abstract: An analog-to-digital convertor circuit converts the output of a loop filter circuit to a digital signal. A random sequence generation circuit generates a random sequence. Adder circuitry adds the random sequence to the digital signal to generate a randomized digital signal. Noise transfer function impulse response detection circuitry processes the randomized digital signal and the random sequence to determine a noise transfer function impulse response. Loop filter configuration circuitry configures the loop filter circuit based on the noise transfer function impulse response. The random sequence generation circuit may comprises a high-pass sigma delta modulator. The noise transfer function impulse response detection circuitry may determine the noise transfer function impulse response, and the loop filter configuration circuitry may configure the loop filter based on the noise transfer function impulse response.
    Type: Application
    Filed: June 12, 2019
    Publication date: December 12, 2019
    Inventors: Chandrajit Debnath, Abhishek Ghosh, Rishi Mathur, Anand Mohan Pappu
  • Publication number: 20190341926
    Abstract: An analog-to-digital converter circuit comprises code-shuffling circuitry, a plurality of digital-to-analog converter circuits, a plurality of difference circuits, and a plurality of latch circuits. The code-shuffling circuitry is operable to shuffle a plurality of digital codes among a plurality of its outputs. The plurality of digital-to-analog converter circuits are operable to convert a digital code on the respective one of the outputs to a corresponding one of a plurality of analog reference voltages. The plurality of difference circuits is operable to generate a respective one of a plurality of difference signals corresponding to a difference between an input voltage and a respective one of the plurality of reference voltages. The plurality of latch circuits is operable to latch a respective one of the plurality of difference signals to a corresponding one of a plurality of digital values.
    Type: Application
    Filed: May 1, 2019
    Publication date: November 7, 2019
    Inventors: Rishi Mathur, Chandrajit Debnath, Abhishek Ghosh, Anand Mohan Pappu
  • Publication number: 20190341892
    Abstract: A transconductance circuit comprises a first transistor, a second transistor, a first source-degeneration device, a second source-degeneration device, a first feedback device, and a second feedback device. The gate node of the first transistor is coupled to a source node of the second transistor via the first feedback device. The gate node of the second transistor is coupled to a source node of the second transistor via the second feedback device. The source node of the first transistor is coupled to a reference voltage via the first source-degeneration device. The source node of the second transistor is coupled to the reference voltage via the second source-degeneration device.
    Type: Application
    Filed: May 1, 2019
    Publication date: November 7, 2019
    Inventors: Anand Mohan Pappu, Ranjit Kumar Guntreddi, Madhusudan Govindarajan, Pranjal Pandey, Prasenjit Bhowmik