Patents by Inventor Anand S. Murthy
Anand S. Murthy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11101268Abstract: Techniques are disclosed for forming transistors employing non-selective deposition of source and drain (S/D) material. Non-selectively depositing S/D material provides a multitude of benefits over only selectively depositing the S/D material, such as being able to attain relatively higher dopant activation, steeper dopant profiles, and better channel strain, for example.Type: GrantFiled: March 30, 2017Date of Patent: August 24, 2021Assignee: Intel CorporationInventors: Karthik Jambunathan, Scott J. Maddox, Ritesh Jhaveri, Pratik A. Patel, Szuya S. Liao, Anand S. Murthy, Tahir Ghani
-
Patent number: 11094785Abstract: Techniques are disclosed for deuterium-based passivation of non-planar transistor interfaces. In some cases, the techniques can include annealing an integrated circuit structure including the transistor in a range of temperatures, pressures, and times in an atmosphere that includes deuterium. In some instances, the anneal process may be performed at pressures of up to 50 atmospheres to increase the amount of deuterium that penetrates the integrated circuit structure and reaches the interfaces to be passivated. Interfaces to be passivated may include, for example, an interface between the transistor conductive channel and bordering transistor gate dielectric and/or an interface between sub-channel semiconductor and bordering shallow trench isolation oxides.Type: GrantFiled: May 18, 2020Date of Patent: August 17, 2021Assignee: Intel CorporationInventors: Prashant Majhi, Glenn A. Glass, Anand S. Murthy, Tahir Ghani, Aravind S. Killampalli, Mark R. Brazier, Jaya P. Gupta
-
Patent number: 11081570Abstract: Integrated circuit transistor structures are disclosed that include a gate structure that is lattice matched to the underlying channel. In particular, the gate dielectric is lattice matched to the underlying semiconductor channel material, and in some embodiments, so is the gate electrode. In an example embodiment, single crystal semiconductor channel material and single crystal gate dielectric material that are sufficiently lattice matched to each other are epitaxially deposited. In some cases, the gate electrode material may also be a single crystal material that is lattice matched to the semiconductor channel material, thereby allowing the gate electrode to impart strain on the channel via the also lattice matched gate dielectric. A gate dielectric material that is lattice matched to the channel material can be used to reduce interface trap density (Dit). The techniques can be used in both planar and non-planar (e.g., finFET and nanowire) metal oxide semiconductor (MOS) transistor architectures.Type: GrantFiled: September 28, 2016Date of Patent: August 3, 2021Assignee: Intel CorporationInventors: Karthik Jambunathan, Glenn A. Glass, Anand S. Murthy, Jack T. Kavalieros, Seung Hoon Sung, Benjamin Chu-Kung, Tahir Ghani
-
Patent number: 11069795Abstract: Integrated circuits include fins including an upper/channel region and a lower/sub-channel region, the lower region having a first chemical composition and opposing sidewalls adjacent to an insulator material, and the upper region having a second chemical composition. A first width indicates the distance between the opposing sidewalls of the lower region at a first location is at least 1 nm wider than a second width indicating the distance between the opposing sidewalls of the upper region at a second location, the first location being within 10 nm of the second location (or otherwise relatively close to one another). The first chemical composition is distinct from the second chemical composition and includes a surface chemical composition at an outer surface of the opposing sidewalls of the lower region and a bulk chemical composition therebetween, the surface chemical composition including one or more of oxygen, nitrogen, carbon, chlorine, fluorine, and sulfur.Type: GrantFiled: September 28, 2017Date of Patent: July 20, 2021Assignee: Intel CorporationInventors: Karthik Jambunathan, Glenn A. Glass, Anand S. Murthy, Jun Sung Kang, Bruce E. Beattie, Anupama Bowonder, Biswajeet Guha, Ju H. Nam, Tahir Ghani
-
Patent number: 11056592Abstract: An integrated circuit (IC) includes a substrate that includes silicon. A first layer is on the substrate and includes a first monocrystalline semiconductor material, the first layer having a plurality of defects. A second layer is on the first layer and includes a second monocrystalline semiconductor material that includes germanium. A strained channel structure is above the first layer. A gate structure is at least above the channel structure. A source region is adjacent the channel structure. A drain region is adjacent the channel structure, such that the channel structure is laterally between the source region and the drain region.Type: GrantFiled: June 30, 2017Date of Patent: July 6, 2021Assignee: Intel CorporationInventors: Karthik Jambunathan, Cory C. Bomberger, Glenn A. Glass, Anand S. Murthy, Ju H. Nam, Tahir Ghani
-
Patent number: 11049773Abstract: A transistor device comprising a channel disposed on a substrate between a source and a drain, a gate electrode disposed on the channel, wherein the channel comprises a channel material that is separated from a body of the same material on a substrate. A method comprising forming a trench in a dielectric layer on an integrated circuit substrate, the trench comprising dimensions for a transistor body including a width; depositing a spacer layer in a portion of the trench, the spacer layer narrowing the width of the trench; forming a channel material in the trench through the spacer layer; recessing the dielectric layer to define a first portion of the channel material exposed and a second portion of the channel material in the trench; and separating the first portion of the channel material from the second portion of the channel material.Type: GrantFiled: September 30, 2016Date of Patent: June 29, 2021Assignee: Intel CorporationInventors: Gilbert Dewey, Matthew V. Metz, Sean T. Ma, Cheng-Ying Huang, Tahir Ghani, Anand S. Murthy, Harold W. Kennel, Nicholas G. Minutillo, Jack T. Kavalieros, Willy Rachmady
-
Patent number: 11024737Abstract: A replacement fin layer is deposited on a sub-fin layer in trenches isolated by an insulating layer on a substrate. The replacement fin layer has first component rich side portions and a second component rich core portion. The second component rich core portion is etched to generate a double fin structure comprising the first component rich fins.Type: GrantFiled: March 30, 2016Date of Patent: June 1, 2021Assignee: Intel CorporationInventors: Chandra S. Mohapatra, Glenn A. Glass, Anand S. Murthy, Karthik Jambunathan
-
Patent number: 11024713Abstract: An apparatus is provided which comprises: a semiconductor region on a substrate, a gate stack on the semiconductor region, a source region of doped semiconductor material on the substrate adjacent a first side of the semiconductor region, a drain region of doped semiconductor material on the substrate adjacent a second side of the semiconductor region, and a transition region in the drain region, adjacent the semiconductor region, wherein the transition region comprises varying dopant concentrations that increase in a direction away from the semiconductor region. Other embodiments are also disclosed and claimed.Type: GrantFiled: December 31, 2016Date of Patent: June 1, 2021Assignee: Intel CorporationInventors: Seung Hoon Sung, Dipanjan Basu, Glenn A. Glass, Harold W. Kennel, Ashish Agrawal, Benjamin Chu-Kung, Anand S. Murthy, Jack T. Kavalieros, Tahir Ghani
-
Patent number: 11011620Abstract: Techniques are disclosed for forming increasing channel region tensile strain in n-MOS devices. In some cases, increased channel region tensile strain can be achieved via S/D material engineering that deliberately introduces dislocations in one or both of the S/D regions to produce tensile strain in the adjacent channel region. In some such cases, the S/D material engineering to create desired dislocations may include using a lattice mismatched epitaxial S/D film adjacent to the channel region. Numerous material schemes for achieving multiple dislocations in one or both S/D regions will be apparent in light of this disclosure. In some cases, a cap layer can be formed on an S/D region to reduce contact resistance, such that the cap layer is an intervening layer between the S/D region and S/D contact. The cap layer includes different material than the underlying S/D region and/or a higher dopant concentration to reduce contact resistance.Type: GrantFiled: September 27, 2016Date of Patent: May 18, 2021Assignee: Intel CorporationInventors: Rishabh Mehandru, Cory E. Weber, Anand S. Murthy, Karthik Jambunathan, Glenn A. Glass, Jiong Zhang, Ritesh Jhaveri, Szuya S. Liao
-
Patent number: 11004954Abstract: Integrated circuit transistor structures are disclosed that include a single crystal buffer structure that is lattice matched to the underlying single crystal silicon substrate. The buffer structure may be used to reduce sub-fin leakage in non-planar transistors, but can also be used in planar configurations. In some embodiments, the buffer structure is a single continuous layer of high bandgap dielectric material that is lattice matched to silicon. The techniques below can be utilized on NMOS and PMOS transistors, including any number of group IV and III-V semiconductor channel materials.Type: GrantFiled: September 30, 2016Date of Patent: May 11, 2021Assignee: Intel CorporationInventors: Karthik Jambunathan, Glenn A. Glass, Anand S. Murthy, Jack T. Kavalieros, Seung Hoon Sung, Benjamin Chu-Kung, Tahir Ghani
-
Patent number: 10998270Abstract: Techniques are disclosed for forming transistor devices having reduced interfacial resistance in a local interconnect. The local interconnect can be a material having similar composition to that of the source/drain material. That composition can be a metal alloy of a group IV element such as nickel germanide. The local interconnect of the semiconductor integrated circuit can function in the absence of barrier and liner layers. The devices can be used on MOS transistors including PMOS transistors.Type: GrantFiled: October 28, 2016Date of Patent: May 4, 2021Assignee: Intel CorporationInventors: Seung Hoon Sung, Glenn A. Glass, Van H. Le, Ashish Agrawal, Benjamin Chu-Kung, Anand S. Murthy, Jack T. Kavalieros
-
Patent number: 10985263Abstract: An apparatus is provided which comprises: a semiconductor region on a substrate, a gate stack on the semiconductor region, a source region of doped semiconductor material on the substrate adjacent a first side of the semiconductor region, a cap region on the substrate adjacent a second side of the semiconductor region, wherein the cap region comprises semiconductor material of a higher band gap than the semiconductor region, and a drain region comprising doped semiconductor material on the cap region. Other embodiments are also disclosed and claimed.Type: GrantFiled: December 31, 2016Date of Patent: April 20, 2021Assignee: Intel CorporationInventors: Seung Hoon Sung, Dipanjan Basu, Ashish Agrawal, Van H. Le, Benjamin Chu-Kung, Harold W. Kennel, Glenn A. Glass, Anand S. Murthy, Jack T. Kavalieros, Tahir Ghani
-
Patent number: 10978568Abstract: Techniques are disclosed for passivation of transistor channel region interfaces. In some cases, the transistor channel region interfaces to be passivated include the interface between the semiconductor channel and the gate dielectric and/or the interface between the sub-channel semiconductor material and isolation material. For example, an aluminum oxide (also referred to as alumina) layer may be used to passivate channel/gate interfaces where the channel material includes silicon germanium, germanium, or a III-V material. The techniques can be used to reduce the interface trap density at the channel/gate interface and the techniques can also be used to passivate the channel/gate interface in both gate first and gate last process flows. The techniques may also include an additional passivation layer at the sub-channel/isolation interface to, for example, avoid incurring additional parasitic capacitance penalty.Type: GrantFiled: September 25, 2015Date of Patent: April 13, 2021Assignee: Intel CorporationInventors: Glenn A. Glass, Mark R. Brazier, Anand S. Murthy, Tahir Ghani, Owen Y. Loh
-
Patent number: 10957769Abstract: Monolithic FETs including a fin of a first III-V semiconductor material offering high carrier mobility is clad with a second III-V semiconductor material having a wider bandgap. The wider bandgap cladding may advantageously reduce band-to-band tunneling (BTBT) leakage current while transistor is in an off-state while the lower bandgap core material may advantageously provide high current conduction while transistor is in an on-state. In some embodiments, a InGaAs cladding material richer in Ga is grown over an InGaAs core material richer in In. In some embodiments, the semiconductor cladding is a few nanometers thick layer epitaxially grown on surfaces of the semiconductor core. The cladded fin may be further integrated into a gate-last finFET fabrication process. Other embodiments may be described and/or claimed.Type: GrantFiled: June 17, 2016Date of Patent: March 23, 2021Assignee: Intel CorporationInventors: Sean T. Ma, Chandra S. Mohapatra, Gilbert Dewey, Willy Rachmady, Harold W. Kennel, Matthew V. Metz, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
-
Patent number: 10957796Abstract: Embodiments of the present invention describe a epitaxial region on a semiconductor device. In one embodiment, the epitaxial region is deposited onto a substrate via cyclical deposition-etch process. Cavities created underneath the spacer during the cyclical deposition-etch process are backfilled by an epitaxial cap layer. The epitaxial region and epitaxial cap layer improves electron mobility at the channel region, reduces short channel effects and decreases parasitic resistance.Type: GrantFiled: October 21, 2013Date of Patent: March 23, 2021Assignee: Intel CorporationInventors: Anand S. Murthy, Daniel Bourne Aubertine, Tahir Ghani, Abhijit Jayant Pethe
-
Publication number: 20210083117Abstract: Techniques and mechanisms to impose stress on a transistor which includes a channel region and a source or drain region each in a fin structure. In an embodiment, a gate structure of the transistor extends over the fin structure, wherein a first spacer portion is at a sidewall of the gate structure and a second spacer portion adjoins the first spacer portion. Either or both of two features are present at or under respective bottom edges of the spacer portions. One of the features includes a line of discontinuity on the fin structure. The other feature includes a concentration of a dopant in the second spacer portion being greater than a concentration of the dopant in the source or drain region. In another embodiment, the fin structure is disposed on a buffer layer, wherein stress on the channel region is imposed at least in part with the buffer layer.Type: ApplicationFiled: September 29, 2017Publication date: March 18, 2021Applicant: INTEL CORPORATIONInventors: Rishabh Mehandru, Stephen M. Cea, Tahir Ghani, Anand S. Murthy
-
Publication number: 20210074823Abstract: Techniques are disclosed for backside source/drain (S/D) replacement for semiconductor devices with metallization on both sides (MOBS). The techniques described herein provide methods to recover or otherwise facilitate low contact resistance, thereby reducing or eliminating parasitic external resistance that degrades transistor performance. In some cases, the techniques include forming sacrificial S/D material and a seed layer during frontside processing of a device layer including one or more transistor devices. The device layer can then be inverted and bonded to a host wafer. A backside reveal of the device layer can then be performed via grinding, etching, and/or CMP processes. The sacrificial S/D material can then be removed through backside S/D contact trenches using the seed layer as an etch stop, followed by the formation of relatively highly doped final S/D material grown from the seed layer, to provide enhanced ohmic contact properties. Other embodiments may be described and/or disclosed.Type: ApplicationFiled: October 28, 2020Publication date: March 11, 2021Applicant: INTEL CORPORATIONInventors: Glenn A. Glass, Karthik Jambunathan, Anand S. Murthy, Chandra S. Mohapatra, Patrick Morrow, Mauro J. Kobrinsky
-
Patent number: 10944006Abstract: A trench is formed in an insulating layer to expose a native fin on a substrate. A replacement fin is deposited on the native fin in the trench. The replacement fin is trimmed laterally.Type: GrantFiled: March 30, 2016Date of Patent: March 9, 2021Assignee: Intel CorporationInventors: Glenn A. Glass, Anand S. Murthy, Karthik Jambunathan, Chandra S. Mohapatra, Hei Kam, Nabil G. Mistkawi, Jun Sung Kang, Biswajeet Guha
-
Patent number: 10903364Abstract: Embodiments are generally directed to a semiconductor device with released source and drain. An embodiment of a method includes etching a buffer layer of a semiconductor device to form a gate trench under a gate channel portion of a channel layer of the device; filling the gate trench with an oxide material to form an oxide isolation layer; etching one or more source/drain contact trenches in an interlayer dielectric (ILD) layer for source and drain regions of the device; etching the oxide isolation layer within the one or more source/drain contact trenches to form one or more cavities under a source/drain channel in the source and drain regions, wherein the etching of each contact trench is to expose all sides of the source/drain channel; and depositing contact metal in the one or more contact trenches, including depositing the contact metal in the cavities under the source/drain channel.Type: GrantFiled: July 2, 2016Date of Patent: January 26, 2021Assignee: Intel CorporationInventors: Willy Rachmady, Sanaz K. Gardner, Chandra S. Mohapatra, Matthew V. Metz, Gilbert Dewey, Sean T. Ma, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
-
Patent number: 10892337Abstract: Techniques are disclosed for backside source/drain (S/D) replacement for semiconductor devices with metallization on both sides (MOBS). The techniques described herein provide methods to recover or otherwise facilitate low contact resistance, thereby reducing or eliminating parasitic external resistance that degrades transistor performance. In some cases, the techniques include forming sacrificial S/D material and a seed layer during frontside processing of a device layer including one or more transistor devices. The device layer can then be inverted and bonded to a host wafer. A backside reveal of the device layer can then be performed via grinding, etching, and/or CMP processes. The sacrificial S/D material can then be removed through backside S/D contact trenches using the seed layer as an etch stop, followed by the formation of relatively highly doped final S/D material grown from the seed layer, to provide enhanced ohmic contact properties. Other embodiments may be described and/or disclosed.Type: GrantFiled: September 30, 2016Date of Patent: January 12, 2021Assignee: INTEL CorporationInventors: Glenn A. Glass, Karthik Jambunathan, Anand S. Murthy, Chandra S. Mohapatra, Patrick Morrow, Mauro J. Kobrinsky