Patents by Inventor Anand V Sampath

Anand V Sampath has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11342131
    Abstract: Disclosed is a semiconductor-liquid junction based photoelectrochemical (PEC) cell for the unassisted solar splitting of water into hydrogen and oxygen gas, the solar-driven reduction of CO2 to higher-order hydrocarbons, and the solar-driven synthesis of NH3. The disclosed system can employ a photocathode based upon wurtzite hexagonal semiconductors that can be tailored with proper band alignment for the redox potentials for water, CO2 reduction, and NH3 production, and with bandgap energy for maximum solar absorption. The design maximizes the carrier collection efficiency by leveraging spontaneous and piezoelectric polarization in these materials systems to generate hot electrons within the photocathode. These electrons have sufficient excess energy, preserved at a designed energy capture region, to overcome the kinetic overpotential (surface chemistry limitation) required for the reactions to occur at a high rate.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: May 24, 2022
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Michael Wraback, Anand V. Sampath, Paul Shen, Vijay S. Parameshwaran
  • Publication number: 20190019627
    Abstract: Disclosed is a semiconductor-liquid junction based photoelectrochemical (PEC) cell for the unassisted solar splitting of water into hydrogen and oxygen gas, the solar-driven reduction of CO2 to higher-order hydrocarbons, and the solar-driven synthesis of NH3. The disclosed system can employ a photocathode based upon wurtzite hexagonal semiconductors that can be tailored with proper band alignment for the redox potentials for water, CO2 reduction, and NH3 production, and with bandgap energy for maximum solar absorption. The design maximizes the carrier collection efficiency by leveraging spontaneous and piezoelectric polarization in these materials systems to generate hot electrons within the photocathode. These electrons have sufficient excess energy, preserved at a designed energy capture region, to overcome the kinetic overpotential (surface chemistry limitation) required for the reactions to occur at a high rate.
    Type: Application
    Filed: July 16, 2018
    Publication date: January 17, 2019
    Inventors: Michael Wraback, Anand V. Sampath, Paul Shen, Vijay S. Parameshwaran
  • Patent number: 8269222
    Abstract: A detection device comprising a photodetector comprising a first semiconductor layer through which light first enters the photodetector; the first semiconductor layer formed of a first semiconductor material crystal lattice which terminates at an interface creating a first interface charge; the first semiconductor layer being an absorption layer in which photons in a predetermined wavelength range are absorbed and create photogenerated carriers; and a second polar semiconductor layer deposited on the crystal lattice of the first semiconductor layer substantially transparent to light in the predetermined wavelength range and having a total polarization different from the first semiconductor layer so that a second interface charge is induced at the interface between the first and second semiconductor layers; the induced second interface charge reduces or substantially cancels the first interface charge so as to increase the collection of photogenerated carriers by the photodetector.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: September 18, 2012
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Paul Shen, Michael Wraback, Anand V Sampath
  • Patent number: 8269223
    Abstract: An avalanche photodetector comprising a multiplication layer formed of a first material having a first polarization; the multiplication layer having a first electric field upon application of a bias voltage; an absorption layer formed of a second material having a second polarization forming an interface with the multiplication layer; the absorption layer having a second electric field upon application of the bias voltage, the second electric field being less than the first electric field or substantially zero, carriers created by light absorbed in the absorption layer being multiplied in the multiplication layer due to the first electric field; the absorption layer having a second polarization which is greater or less than the first polarization to thereby create an interface charge; the interface charge being positive when the first material predominately multiplies holes, the interface charge being negative when the first material predominately multiplies electrons, the change in electric field at the inte
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: September 18, 2012
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Michael Wraback, Paul Shen, Anand V Sampath
  • Publication number: 20110291109
    Abstract: An avalanche photodetector comprising a multiplication layer formed of a first material having a first polarization; the multiplication layer having a first electric field upon application of a bias voltage; an absorption layer formed of a second material having a second polarization forming an interface with the multiplication layer; the absorption layer having a second electric field upon application of the bias voltage, the second electric field being less than the first electric field or substantially zero, carriers created by light absorbed in the absorption layer being multiplied in the multiplication layer due to the first electric field; the absorption layer having a second polarization which is greater or less than the first polarization to thereby create an interface charge; the interface charge being positive when the first material predominately multiplies holes, the interface charge being negative when the first material predominately multiplies electrons, the change in electric field at the inte
    Type: Application
    Filed: May 26, 2011
    Publication date: December 1, 2011
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventors: MICHAEL WRABACK, Paul H. Shen, Anand V. Sampath
  • Publication number: 20110291108
    Abstract: A detection device comprising a photodetector comprising a first semiconductor layer through which light first enters the photodetector; the first semiconductor layer to semiconductor material crystal lattice which terminates at an interface; the discontinuity of the semiconductor crystal lattice at the interface creating a first interface charge; the first semiconductor layer being an absorption layer in which photons in a predetermined wavelength range are absorbed and create photogenerated carriers; and a second polar semiconductor layer deposited on the crystal lattice of the first semiconductor layer, the second polar semiconductor being substantially transparent to light in the predetermined wavelength range, the second polar semiconductor layer having a total polarization different from the first semiconductor layer so that a second interface charge is induced at the interface between the first and second semiconductor layers; the induced second interface charge reduces or substantially cancels the fir
    Type: Application
    Filed: May 24, 2011
    Publication date: December 1, 2011
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventors: Paul H. Shen, Michael Wraback, Anand V. Sampath