Patents by Inventor Anantharam Prasad Dadi

Anantharam Prasad Dadi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160024545
    Abstract: Method for creating valuable products from lignocellulosic biomass comprising sequential pretreatment of lignocellulosic biomass with ionic liquid followed by hydrothermal processing of the lignin.
    Type: Application
    Filed: March 14, 2014
    Publication date: January 28, 2016
    Inventors: Anantharam Prasad DADI, Praveen PARIPATI
  • Publication number: 20160017540
    Abstract: Method and apparatus for enhanced production of sugars and lignin via fractionation of lignocellulosic biomass through ionic liquid pretreatment and mild alkaline treatment. The resulting biomass is easily fractionated and amenable to efficient and rapid enzymatic hydrolysis or acid hydrolysis and catalytic conversion to valuable products with high recovery of the enzymes used in the hydrolysis.
    Type: Application
    Filed: March 14, 2014
    Publication date: January 21, 2016
    Inventors: Praveen PARIPATI, Anantharam Prasad DADI
  • Publication number: 20140273104
    Abstract: Method and apparatus for enhanced production of sugars and lignin via fractionation of lignocellulosic biomass through sequential ionic liquid pretreatment and mild alkaline treatment. The resulting biomass is easily fractionated and amenable to efficient and rapid hydrolysis and catalytic conversion to valuable products with high recovery of the enzymes used in the hydrolysis.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: SuGanit Systems, Inc.
    Inventors: Praveen PARIPATI, Anantharam Prasad DADI
  • Patent number: 8546109
    Abstract: The present invention relates to a method for lignocellulosic conversion to sugar using an ionic liquid pretreatment for the saccharification of lignocellulosic biomass. Thus, cellulose, hemicellulose, when hydrolyzed into their sugars, can be converted to ethanol fuel through well-established fermentation technologies. These sugars also form the feedstocks for production of a variety of chemical and polymers. The complex structure of the biomass required pretreatment to enable efficient saccharification of cellulose and hemicellulose components to their constituent sugars.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: October 1, 2013
    Assignees: Suganit Systems, Inc., The University of Toledo
    Inventors: Sasidhar Varanasi, Constance Ann Schall, Anantharam Prasad Dadi, Jared Anderson, Kripa Rao, Praveen Paripati, Guneet Kumar
  • Patent number: 8236536
    Abstract: Dissolution, partial dissolution or softening of cellulose in an ionic liquid (IL) and its subsequent contact with anti-solvent produces regenerated cellulose more amorphous in structure than native cellulose, which can be separated from the IL/anti-solvent mixture by mechanical means such as simple filtration or centrifugation. This altered morphology of IL-treated cellulose allows a greater number of sites for enzyme adsorption with a subsequent enhancement of its saccharification. The IL-treated cellulose exhibits significantly improved hydrolysis kinetics with optically transparent solutions formed after about two hours of reaction. This provides an opportunity for separation of products from the catalyst (enzyme) easing enzyme recovery. With an appropriate selection of enzymes, initial hydrolysis rates for IL-treated cellulose were up to two orders of magnitude greater than those of untreated cellulose.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: August 7, 2012
    Assignee: The University of Toledo
    Inventors: Sasidhar Varanasi, Constance Ann Schall, Anantharam Prasad Dadi
  • Publication number: 20120193046
    Abstract: A method for lignocellulose conversion to sugar with improvements in yield and rate of sugar production has been developed by using ionic liquid pretreatment. This new pretreatment strategy substantially improves the efficiency (in terms of yield and reaction rates) of saccharification of lignocellulosic biomass. Cellulose and hemicellulose, when hydrolyzed into their sugars, can be converted into ethanol fuel through well established fermentation technologies. These sugars also form the feedstocks for production of variety of chemicals and polymers. The complex structure of biomass requires proper pretreatment to enable efficient saccharification of cellulose and hemicellulose components to their constituent sugars. Current pretreatment approaches suffer from slow reaction rates of cellulose hydrolysis (by using the enzyme cellulase) and low yields.
    Type: Application
    Filed: September 1, 2011
    Publication date: August 2, 2012
    Applicants: Suganit Systems, Inc., The University of Toledo
    Inventors: Sasidhar VARANASI, Constance Ann Schall, Anantharam Prasad Dadi, Jared Anderson, Kripa Rao, Praveen Paripati, Guneet Kumar
  • Patent number: 8030030
    Abstract: A method for lignocellulose conversion to sugar with improvements in yield and rate of sugar production has been developed by using ionic liquid pretreatment. This new pretreatment strategy substantially improves the efficiency (in terms of yield and reaction rates) of saccharification of lignocellulosic biomass. Cellulose and hemicellulose, when hydrolyzed into their sugars, can be converted into ethanol fuel through well established fermentation technologies. These sugars also form the feedstocks for production of variety of chemicals and polymers. The complex structure of biomass requires proper pretreatment to enable efficient saccharification of cellulose and hemicellulose components to their constituent sugars. Current pretreatment approaches suffer from slow reaction rates of cellulose hydrolysis (by using the enzyme cellulase) and low yields.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: October 4, 2011
    Assignees: The University of Toledo, Suganit Systems, Inc.
    Inventors: Sasidhar Varanasi, Constance Ann Schall, Anantharam Prasad Dadi, Jared Anderson, Kripa Rao, Guneet Kumar, Praveen Paripati
  • Publication number: 20100233773
    Abstract: Dissolution, partial dissolution or softening of cellulose in an ionic liquid (IL) and its subsequent contact with anti-solvent produces regenerated cellulose more amorphous in structure than native cellulose, which can be separated from the IL/anti-solvent mixture by mechanical means such as simple filtration or centrifugation. This altered morphology of IL-treated cellulose allows a greater number of sites for enzyme adsorption with a subsequent enhancement of its saccharification. The IL-treated cellulose exhibits significantly improved hydrolysis kinetics with optically transparent solutions formed after about two hours of reaction. This provides an opportunity for separation of products from the catalyst (enzyme) easing enzyme recovery. With an appropriate selection of enzymes, initial hydrolysis rates for IL-treated cellulose were up to two orders of magnitude greater than those of untreated cellulose.
    Type: Application
    Filed: January 13, 2010
    Publication date: September 16, 2010
    Applicant: Toledo, The University Of
    Inventors: Sasidhar Varanasi, Constance Ann Schall, Anantharam Prasad Dadi
  • Patent number: 7674608
    Abstract: Dissolution, partial dissolution or softening of cellulose in an ionic liquid (IL) and its subsequent contact with anti-solvent produces regenerated cellulose more amorphous in structure than native cellulose, which can be separated from the IL/anti-solvent mixture by mechanical means such as simple filtration or centrifugation. This altered morphology of IL-treated cellulose allows a greater number of sites for enzyme adsorption with a subsequent enhancement of its saccharification. The IL-treated cellulose exhibits significantly improved hydrolysis kinetics with optically transparent solutions formed after about two hours of reaction. This provides an opportunity for separation of products from the catalyst (enzyme) easing enzyme recovery. With an appropriate selection of enzymes, initial hydrolysis rates for IL-treated cellulose were up to two orders of magnitude greater than those of untreated cellulose.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: March 9, 2010
    Assignee: The University of Toledo
    Inventors: Sasidhar Varanasi, Constance Ann Schall, Anantharam Prasad Dadi
  • Publication number: 20090011473
    Abstract: Dissolution, partial dissolution or softening of cellulose in an ionic liquid (IL) and its subsequent contact with anti-solvent produces regenerated cellulose more amorphous in structure than native cellulose, which can be separated from the IL/anti-solvent mixture by mechanical means such as simple filtration or centrifugation. This altered morphology of IL-treated cellulose allows a greater number of sites for enzyme adsorption with a subsequent enhancement of its saccharification. The IL-treated cellulose exhibits significantly improved hydrolysis kinetics with optically transparent solutions formed after about two hours of reaction. This provides an opportunity for separation of products from the catalyst (enzyme) easing enzyme recovery. With an appropriate selection of enzymes, initial hydrolysis rates for IL-treated cellulose were up to two orders of magnitude greater than those of untreated cellulose.
    Type: Application
    Filed: February 23, 2007
    Publication date: January 8, 2009
    Inventors: Sasidhar Varanasi, Constance Ann Schall, Anantharam Prasad Dadi
  • Publication number: 20080227162
    Abstract: A method for lignocellulose conversion to sugar with improvements in yield and rate of sugar production has been developed by using ionic liquid pretreatment. This new pretreatment strategy substantially improves the efficiency (in terms of yield and reaction rates) of saccharification of lignocellulosic biomass. Cellulose and hemicellulose, when hydrolyzed into their sugars, can be converted into ethanol fuel through well established fermentation technologies. These sugars also form the feedstocks for production of variety of chemicals and polymers. The complex structure of biomass requires proper pretreatment to enable efficient saccharification of cellulose and hemicellulose components to their constituent sugars. Current pretreatment approaches suffer from slow reaction rates of cellulose hydrolysis (by using the enzyme cellulase) and low yields.
    Type: Application
    Filed: March 13, 2008
    Publication date: September 18, 2008
    Inventors: Sasidhar Varanasi, Constance Ann Schall, Anantharam Prasad Dadi, Jared Anderson, Kripa Rao