Patents by Inventor Anantharaman Vaidyanathan

Anantharaman Vaidyanathan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230282489
    Abstract: Systems are described. A system includes a silicon backplane having a top surface, a bottom surface, and side surfaces and a substrate surrounding the side surfaces of the silicon backplane. The substrate has a top surface, a bottom surface and side surfaces. At least one bond pad is provided on the bottom surface of the substrate. A metal layer is provided on the bottom surface of the substrate and the bottom surface of the silicon backplane and has a first portion electrically and thermally coupled to the bottom surface of the silicon backplane in a central region and second portions that extend between a perimeter region of the silicon backplane and the at least one bond pad. An array of metal connectors is provided on the top surface of the silicon backplane.
    Type: Application
    Filed: February 28, 2023
    Publication date: September 7, 2023
    Applicant: Lumileds LLC
    Inventors: Tze Yang HIN, Anantharaman VAIDYANATHAN, Srini BANNA, Ronald Johannes BONNE
  • Patent number: 11631594
    Abstract: Methods of manufacturing a system are described. A method includes attaching a silicon backplane to a carrier and molding the silicon backplane on the carrier such that a molding material surrounds side surfaces of the silicon backplane to form a structure comprising a substrate with an embedded silicon backplane. The structure has a first surface opposite the carrier, a second surface adjacent the carrier, and side surfaces. At least one via is formed through the molding material and filled with a metal material. A metal layer is formed on a central region of the first surface of the structure. Redistribution layers are formed on the first surface of the structure adjacent the metal layer.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: April 18, 2023
    Assignee: Lumileds LLC
    Inventors: Tze Yang Hin, Anantharaman Vaidyanathan, Srini Banna, Ronald Johannes Bonne
  • Patent number: 11621173
    Abstract: Systems are described. A system includes a silicon backplane having a top surface, a bottom surface, and side surfaces and a substrate surrounding the side surfaces of the silicon backplane. The substrate has a top surface, a bottom surface and side surfaces. At least one bond pad is provided on the bottom surface of the substrate. A metal layer is provided on the bottom surface of the substrate and the bottom surface of the silicon backplane and has a first portion electrically and thermally coupled to the bottom surface of the silicon backplane in a central region and second portions that extend between a perimeter region of the silicon backplane and the at least one bond pad. An array of metal connectors is provided on the top surface of the silicon backplane.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: April 4, 2023
    Assignee: Lumileds LLC
    Inventors: Tze Yang Hin, Anantharaman Vaidyanathan, Srini Banna, Ronald Johannes Bonne
  • Patent number: 11156346
    Abstract: LED lighting systems and vehicle headlamp systems are described. An LED lighting system includes a silicon backplane having a top surface, a bottom surface, and side surfaces and a substrate surrounding the side surfaces of the silicon backplane, the substrate having a top surface, a bottom surface and side surfaces. First redistribution layers are provided on the top surface of the silicon backplane and the top surface of the substrate. Second redistribution layers are provided on the bottom surface of the silicon backplane and the bottom surface of the substrate. At least one via extends through the substrate between the first redistribution layers and the second redistribution layers and is filled with a metal material.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: October 26, 2021
    Assignee: Lumileds LLC
    Inventors: Tze Yang Hin, Anantharaman Vaidyanathan, Srini Banna, Ronald Johannes Bonne
  • Patent number: 11125425
    Abstract: LED lighting systems and vehicle headlamp systems are described. An LED lighting system includes a silicon backplane having a top surface, a bottom surface, and side surfaces and a substrate surrounding the side surfaces of the silicon backplane, the substrate having a top surface, a bottom surface and side surfaces. First redistribution layers are provided on the top surface of the silicon backplane and the top surface of the substrate. Second redistribution layers are provided on the bottom surface of the silicon backplane and the bottom surface of the substrate. At least one via extends through the substrate between the first redistribution layers and the second redistribution layers and is filled with a metal material.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: September 21, 2021
    Assignee: Lumileds LLC
    Inventors: Tze Yang Hin, Anantharaman Vaidyanathan, Srini Banna, Ronald Johannes Bonne
  • Publication number: 20210151648
    Abstract: Methods of manufacturing a system are described. A method includes attaching a silicon backplane to a carrier and molding the silicon backplane on the carrier such that a molding material surrounds side surfaces of the silicon backplane to form a structure comprising a substrate with an embedded silicon backplane. The structure has a first surface opposite the carrier, a second surface adjacent the carrier, and side surfaces. At least one via is formed through the molding material and filled with a metal material. A metal layer is formed on a central region of the first surface of the structure. Redistribution layers are formed on the first surface of the structure adjacent the metal layer.
    Type: Application
    Filed: January 23, 2020
    Publication date: May 20, 2021
    Applicant: Lumileds LLC
    Inventors: Tze Yang HIN, Anantharaman VAIDYANATHAN, Srini BANNA, Ronald Johannes BONNE
  • Publication number: 20210148553
    Abstract: LED lighting systems and vehicle headlamp systems are described. An LED lighting system includes a silicon backplane having a top surface, a bottom surface, and side surfaces and a substrate surrounding the side surfaces of the silicon backplane, the substrate having a top surface, a bottom surface and side surfaces. First redistribution layers are provided on the top surface of the silicon backplane and the top surface of the substrate. Second redistribution layers are provided on the bottom surface of the silicon backplane and the bottom surface of the substrate. At least one via extends through the substrate between the first redistribution layers and the second redistribution layers and is filled with a metal material.
    Type: Application
    Filed: January 23, 2020
    Publication date: May 20, 2021
    Applicant: Lumileds LLC
    Inventors: Tze Yang HIN, Anantharaman VAIDYANATHAN, Srini BANNA, Ronald Johannes BONNE
  • Publication number: 20210148554
    Abstract: Systems are described. A system includes a silicon backplane having a top surface, a bottom surface, and side surfaces and a substrate surrounding the side surfaces of the silicon backplane. The substrate has a top surface, a bottom surface and side surfaces. At least one bond pad is provided on the bottom surface of the substrate. A metal layer is provided on the bottom surface of the substrate and the bottom surface of the silicon backplane and has a first portion electrically and thermally coupled to the bottom surface of the silicon backplane in a central region and second portions that extend between a perimeter region of the silicon backplane and the at least one bond pad. An array of metal connectors is provided on the top surface of the silicon backplane.
    Type: Application
    Filed: January 23, 2020
    Publication date: May 20, 2021
    Applicant: Lumileds LLC
    Inventors: Tze Yang HIN, Anantharaman VAIDYANATHAN, Srini BANNA, Ronald Johannes BONNE
  • Patent number: 7261982
    Abstract: The present application relates to a method of fabricating planar circuits using a photo lithographic mask set, to the photo lithographic mask set, and to a planar circuit fabricated with the photo lithographic mask set. The instant invention involves separating a photo lithographic mask into two parts, namely, a master mask and one or more slave masks. The master mask and the one or more slave masks form a photo lithographic mask set that is used iteratively to fabricate the planar circuits. In particular, the master mask is used as a template to provide the general layout for the planar circuit, while each slave mask is varied to tune and/or tailor the planar circuit. Since only a small portion of the planar circuit is redesigned and/or rewritten as a new mask (i.e., the slave mask), the instant invention provides a simple and cost effective method for optimizing planar circuits.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: August 28, 2007
    Assignee: JDS Uniphase Corporation
    Inventors: Barthelemy Fondeur, Anca L. Sala, Robert J. Brainard, David K. Nakamoto, Tom Truong, Sanjay M. Thekdi, Anantharaman Vaidyanathan
  • Patent number: 7162108
    Abstract: The invention relates to a variable optical attenuator constructed as a Mach Zehnder planar lightwave circuit, particularly including a channel waveguide support structure for heat isolation and stress relief to reduce polarization dependent loss (PDL) and power consumption in the device. Power reduction trenches comprise longitudinal segments having small stress relief pillars of cladding material left in between them in the etching process. The waveguides of the MZI are supported by a main pillar structure and integral stress relief pillars which remain after removal of the trenches. The waveguide is surrounded by air on three sides for improved heat isolation. The performance of the present invention shows substantial improvement in PDL and extinction ratio over the prior art continuous trench design, and also, to a smaller degree, over the case where power reduction trenches are not used at all.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: January 9, 2007
    Assignee: JDS Uniphase Corporation
    Inventors: Anca L. Sala, Duncan W. Harwood, Barthelemy Fondeur, Anantharaman Vaidyanathan, Robert J. Brainard, Sanjay M. Thekdi, Thomas T. Nguyen, Ian Hutagalung
  • Patent number: 6947653
    Abstract: A planar lightwave circuit includes at least one optical waveguide core, and at least one feature proximate the core having a stress-engineered property to balance stress and therefore minimize birefringence affecting the core. A protective passivation layer is formed over the core and the feature to be substantially non-interfering with the balanced stress provided by the feature. The stress balancing feature may be an overcladding layer formed over the core, doped to have a coefficient of thermal expansion approximately matched to that of an underlying substrate, to symmetrically distribute stress in an undercladding between the overcladding and the substrate, away from the core. The protective passivation layer is formed to have a coefficient of thermal expansion approximately matched to that of the overcladding. In one exemplary embodiment, the passivation layer is formed from silicon nitride. Related concepts of stress release grooves, and core overetching, are also disclosed.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: September 20, 2005
    Assignee: JDS Uniphase Corporation
    Inventors: Jyoti Kiron Bhardwaj, Robert James Brainard, Zi-Wen Dong, David Dougherty, Erik W. Egan, Niranjan Gopinathan, David K. Nakamoto, Thomas Thuan Nguyen, Sanjay M. Thekdi, Anantharaman Vaidyanathan, Hiroaki Yamada, Yingchao Yan
  • Publication number: 20050135728
    Abstract: The invention relates to a variable optical attenuator constructed as a Mach Zehnder planar lightwave circuit, particularly including a channel waveguide support structure for heat isolation and stress relief to reduce polarization dependent loss (PDL) and power consumption in the device. Power reduction trenches comprise longitudinal segments having small stress relief pillars of cladding material left in between them in the etching process. The waveguides of the MZI are supported by a main pillar structure and integral stress relief pillars which remain after removal of the trenches. The waveguide is surrounded by air on three sides for improved heat isolation. The performance of the present invention shows substantial improvement in PDL and extinction ratio over the prior art continuous trench design, and also, to a smaller degree, over the case where power reduction trenches are not used at all.
    Type: Application
    Filed: December 17, 2004
    Publication date: June 23, 2005
    Applicant: JDS UNIPHASE CORPORATION
    Inventors: Anca Sala, Duncan Harwood, Barthelemy Fondeur, Anantharaman Vaidyanathan, Robert Brainard, Sanjay Thekdi, Thomas Nguyen, Ian Hutagalung
  • Publication number: 20050031968
    Abstract: The present application relates to a method of fabricating planar circuits using a photolithographic mask set, to the photolithographic mask set, and to a planar circuit fabricated with the photolithographic mask set. The instant invention involves separating a photolithographic mask into two parts, namely, a master mask and one or more slave masks. The master mask and the one or more slave masks form a photolithographic mask set that is used iteratively to fabricate the planar circuits. In particular, the master mask is used as a template to provide the general layout for the planar circuit, while each slave mask is varied to tune and/or tailor the planar circuit. Since only a small portion of the planar circuit is redesigned and/or rewritten as a new mask (i.e., the slave mask), the instant invention provides a simple and cost effective method for optimizing planar circuits.
    Type: Application
    Filed: December 15, 2003
    Publication date: February 10, 2005
    Applicant: JDS Uniphase Corporation
    Inventors: Barthelemy Fondeur, Anca Sala, Robert Brainard, David Nakamoto, Tom Truong, Sanjay Thekdi, Anantharaman Vaidyanathan
  • Patent number: 6697553
    Abstract: A planar lightwave circuit includes an arrayed waveguide grating (AWG), with input and output waveguides, partially curved array waveguides with respective length differences, and planar waveguide regions for focusing optical energy between the input/output and array waveguides. Optimal waveguide widths and spacing along the planar waveguide region facets are disclosed, which are largely determinative of AWG size and optical performance. Also disclosed are optimal cross-sectional waveguide dimensions (e.g., width and height); modified index of refraction difference between the waveguide core and cladding regions; and optimal array waveguide lengths, path length differences, and free spectral range. These features, especially when combined with advanced fiber attachment, passivation and packaging techniques, result in high-yield, high-performance AWGs (both gaussian and flattop versions).
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: February 24, 2004
    Assignee: JDS Uniphase Corporation
    Inventors: Jyoti Kiron Bhardwaj, Robert James Brainard, David J. Chapman, Douglas E. Crafts, Zi-Wen Dong, David Dougherty, Erik W. Egan, James F. Farrell, Mark B. Farrelly, Niranjan Gopinathan, Kenzo Ishida, David K. Nakamoto, Thomas Thuan Nguyen, Suresh Ramalingam, Steven M. Swain, Sanjay M. Thekdi, Anantharaman Vaidyanathan, Hiroaki Yamada, Yingchao Yan
  • Publication number: 20030156789
    Abstract: A planar lightwave circuit includes an arrayed waveguide grating (AWG), with input and output waveguides, partially curved array waveguides with respective length differences, and planar waveguide regions for focusing optical energy between the input/output and array waveguides. Optimal waveguide widths and spacing along the planar waveguide region facets are disclosed, which are largely determinative of AWG size and optical performance. Also disclosed are optimal cross-sectional waveguide dimensions (e.g., width and height); modified index of refraction difference between the waveguide core and cladding regions; and optimal array waveguide lengths, path length differences, and free spectral range. These features, especially when combined with advanced fiber attachment, passivation and packaging techniques, result in high-yield, high-performance AWGs (both gaussian and flattop versions).
    Type: Application
    Filed: February 15, 2002
    Publication date: August 21, 2003
    Inventors: Jyoti Kiron Bhardwaj, Robert James Brainard, David J. Chapman, Douglas E. Crafts, Zi-Wen Dong, David Dougherty, Erik W. Egan, James F. Farrell, Mark B. Farrelly, Niranjan Gopinathan, Kenzo Ishida, David K. Nakamoto, Thomas Thuan Nguyen, Suresh Ramalingam, Steven M. Swain, Sanjay M. Thekdi, Anantharaman Vaidyanathan, Hiroaki Yamada, Yingchao Yan
  • Publication number: 20030072548
    Abstract: A planar lightwave circuit includes at least one optical waveguide core, and at least one feature proximate the core having a stress-engineered property to balance stress and therefore minimize birefringence affecting the core. A protective passivation layer is formed over the core and the feature to be substantially non-interfering with the balanced stress provided by the feature. The stress balancing feature may be an overcladding layer formed over the core, doped to have a coefficient of thermal expansion approximately matched to that of an underlying substrate, to symmetrically distribute stress in an undercladding between the overcladding and the substrate, away from the core. The protective passivation layer is formed to have a coefficient of thermal expansion approximately matched to that of the overcladding. In one exemplary embodiment, the passivation layer is formed from silicon nitride. Related concepts of stress release grooves, and core overetching, are also disclosed.
    Type: Application
    Filed: October 12, 2001
    Publication date: April 17, 2003
    Applicant: Scion Photonics, Inc.
    Inventors: Jyoti Kiron Bhardwaj, Robert James Brainard, Zi-Wen Dong, David Dougherty, Erik W. Egan, Niranjan Gopinathan, David K. Nakamoto, Thomas Thuan Nguyen, Sanjay M. Thekdi, Anantharaman Vaidyanathan, Hiroaki Yamada, Yingchao Yan