Patents by Inventor Anartz Unamuno

Anartz Unamuno has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240132339
    Abstract: Embodiments generally relate to drives for microelectromechanical devices for generating a sound pressure that can be implemented in a microelectromechanical system (MEMS). The movable legs of the actuators are connected to one another by means of connecting elements and form a lateral surface, the volume of which can be changed by the movement of the legs to generate a sound pressure.
    Type: Application
    Filed: October 15, 2023
    Publication date: April 25, 2024
    Inventors: Markus Klemm, Anartz Unamuno
  • Publication number: 20230416076
    Abstract: The invention generally relates to drives for microelectromechanical acoustic pressure-generating device, which may be implemented in a microelectromechanical system (MEMS). In some embodiments of the invention, the microelectromechanical acoustic pressure-generating device is implemented in a chip/die, e.g. in form of a System-on-Chip (SoC) or a System-in-Package (SiP). Further embodiments of the invention relate to the use of such acoustic pressure-generating device in a microelectromechanical loudspeaker system, for example, headphones, hearing-aids, or the like. Embodiments of the invention relate to the miniaturization of the device. Some of the embodiments focus on countermeasures that reduce the pull-in force, which can facilitate further miniaturization of the microelectromechanical acoustic pressure-generating device.
    Type: Application
    Filed: June 15, 2023
    Publication date: December 28, 2023
    Inventors: Holger Conrad, Anartz Unamuno
  • Patent number: 10224164
    Abstract: The present invention generally relates to a MEMS device having a plurality of cantilevers that are coupled together in an anchor region and/or by legs that are coupled in a center area of the cantilever. The legs ensure that each cantilever can move/release from above the RF electrode at the same voltage. The anchor region coupling matches the mechanical stiffness in all sections of the cantilever so that all of the cantilevers move together.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: March 5, 2019
    Assignee: CAVENDISH KINETICS, INC.
    Inventors: Robertus Petrus Van Kampen, Anartz Unamuno, Richard L. Knipe, Roberto Gaddi, Rashed Mahameed
  • Publication number: 20180108338
    Abstract: An acoustic transducer device includes a piezo sound transducer configured to emit, on the basis of a control signal, a first sound wave in a radiation direction. The acoustic transducer device includes an MUT sound transducer configured to provide an output signal on the basis of a second sound wave received from a receive direction.
    Type: Application
    Filed: November 22, 2017
    Publication date: April 19, 2018
    Inventors: Markus KLEMM, Anartz UNAMUNO
  • Patent number: 9708177
    Abstract: Embodiments of the present invention generally relate to a MEMS device that is anchored using the layer that is deposited to form the cavity sealing layer and/or with the layer that is deposited to form the pull-off electrode. The switching element of the MEMS device will have a flexible or movable portion and will also have a fixed or anchor portion that is electrically coupled to ground. The layer that is used to seal the cavity in which the switching element is disposed can also be coupled to the fixed or anchor portion of the switching element to anchor the fixed or anchor portion within the cavity. Additionally, the layer that is used to form one of the electrodes may be used to provide additional leverage for anchoring the fixed or anchor portion within the cavity. In either situation, the movement of the flexible or movable portion is not hindered.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: July 18, 2017
    Assignee: CAVENDISH KINETICS, INC.
    Inventors: Robertus Petrus Van Kampen, Mickael Renault, Vikram Joshi, Richard L. Knipe, Anartz Unamuno
  • Patent number: 9589731
    Abstract: In a MEMS device, the manner in which the membrane lands over the RF electrode can affect device performance. Bumps or stoppers placed over the RF electrode can be used to control the landing of the membrane and thus, the capacitance of the MEMS device. The shape and location of the bumps or stoppers can be tailored to ensure proper landing of the membrane, even when over-voltage is applied. Additionally, bumps or stoppers may be applied on the membrane itself to control the landing of the membrane on the roof or top electrode of the MEMS device.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: March 7, 2017
    Assignee: CAVENDISH KINETICS, INC.
    Inventors: Robertus Petrus Van Kampen, Anartz Unamuno, Richard L. Knipe, Vikram Joshi, Roberto Gaddi, Toshiyuki Nagata
  • Publication number: 20160196923
    Abstract: The present invention generally relates to a method and apparatus for damping a plate electrode or switching element in a MEMS DVC device. A resistor disposed between a waveform controller and the electrodes of the MEMS DVC causes the voltage to increase while capacitance decreases during the time that the plate electrode is moving. Due to the increase in voltage and decrease in capacitance, the electrostatic force that resists the plate electrode movement away from an electrode increases, which in turn dampens the movement of the plate electrode.
    Type: Application
    Filed: May 20, 2014
    Publication date: July 7, 2016
    Inventors: Robertus Petrus VAN KAMPEN, Anartz UNAMUNO
  • Patent number: 9373447
    Abstract: Utilizing a variable capacitor for RF and microwave applications provides for multiple levels of intra-cavity routing that advantageously reduce capacitive coupling. The variable capacitor includes a bond pad that has a plurality of cells electrically coupled thereto. Each of the plurality of cells has a plurality of MEMS devices therein. The MEMS devices share a common RF electrode, one or more ground electrodes and one or more control electrodes. The RF electrode, ground electrodes and control electrodes are all arranged parallel to each other within the cells. The RF electrode is electrically connected to the one or more bond pads using a different level of electrical routing metal.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: June 21, 2016
    Assignee: CAVENDISH KINETICS, INC.
    Inventors: Roberto Gaddi, Robertus Petrus Van Kampen, Richard L. Knipe, Anartz Unamuno
  • Patent number: 9076808
    Abstract: The present invention generally relates to an architecture for isolating an RF MEMS device from a substrate and driving circuit, series and shunt DVC die architectures, and smaller MEMS arrays for high frequency communications. The semiconductor device has one or more cells with a plurality of MEMS devices therein. The MEMS device operates by applying an electrical bias to either a pull-up electrode or a pull-down electrode to move a switching element of the MEMS device between a first position spaced a first distance from an RF electrode and a second position spaced a second distance different than the first distance from the RF electrode. The pull-up and/or pull-off electrode may be coupled to a resistor to isolate the MEMS device from the substrate.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: July 7, 2015
    Assignee: CAVENDISH KINETICS, INC.
    Inventors: Roberto Gaddi, Richard L. Knipe, Robertus Petrus Van Kampen, Anartz Unamuno
  • Patent number: 9018717
    Abstract: The present invention generally relates to MEMS devices and methods for their manufacture. The cantilever of the MEMS device may have a waffle-type microstructure. The waffle-type microstructure utilizes the support beams to impart stiffness to the microstructure while permitting the support beam to flex. The waffle-type microstructure permits design of rigid structures in combination with flexible supports. Additionally, compound springs may be used to create very stiff springs to improve hot-switch performance of MEMS devices. To permit the MEMS devices to utilize higher RF voltages, a pull up electrode may be positioned above the cantilever to help pull the cantilever away from the contact electrode.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: April 28, 2015
    Assignee: Cavendish Kinetics, Ltd.
    Inventors: Richard L. Knipe, Robertus Petrus van Kampen, Anartz Unamuno, Roberto Gaddi
  • Publication number: 20140340814
    Abstract: In a MEMS device, the manner in which the membrane lands over the RF electrode can affect device performance. Bumps or stoppers placed over the RF electrode can be used to control the landing of the membrane and thus, the capacitance of the MEMS device. The shape and location of the bumps or stoppers can be tailored to ensure proper landing of the membrane, even when over-voltage is applied. Additionally, bumps or stoppers may be applied on the membrane itself to control the landing of the membrane on the roof or top electrode of the MEMS device.
    Type: Application
    Filed: September 4, 2012
    Publication date: November 20, 2014
    Applicant: CAVENDISH KINETICS, INC.
    Inventors: Robertus Petrus Van Kampen, Anartz Unamuno, Richard L. Knipe, Vikram Joshi, Roberto Gaddi, Toshiyuki Nagata
  • Patent number: 8861218
    Abstract: Embodiments disclosed herein generally include using a large number of small MEMS devices to replace the function of an individual larger MEMS device or digital variable capacitor. The large number of smaller MEMS devices perform the same function as the larger device, but because of the smaller size, they can be encapsulated in a cavity using complementary metal oxide semiconductor (CMOS) compatible processes. Signal averaging over a large number of the smaller devices allows the accuracy of the array of smaller devices to be equivalent to the larger device. The process is exemplified by considering the use of a MEMS based accelerometer switch array with an integrated analog to digital conversion of the inertial response. The process is also exemplified by considering the use of a MEMS based device structure where the MEMS devices operate in parallel as a digital variable capacitor.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: October 14, 2014
    Assignee: Cavendish Kinetics Inc.
    Inventors: Charles Gordon Smith, Richard L. Knipe, Vikram Joshi, Roberto Gaddi, Anartz Unamuno, Robertus Petrus Van Kampen
  • Publication number: 20140300404
    Abstract: The present invention generally relates to an architecture for isolating an RF MEMS device from a substrate and driving circuit, series and shunt DVC die architectures, and smaller MEMS arrays for high frequency communications. The semiconductor device has one or more cells with a plurality of MEMS devices therein. The MEMS device operates by applying an electrical bias to either a pull-up electrode or a pull-down electrode to move a switching element of the MEMS device between a first position spaced a first distance from an RF electrode and a second position spaced a second distance different than the first distance from the RF electrode. The pull-up and/or pull-off electrode may be coupled to a resistor to isolate the MEMS device from the substrate.
    Type: Application
    Filed: August 31, 2012
    Publication date: October 9, 2014
    Applicant: CAVENDISH KINETICS, INC.
    Inventors: Roberto Gaddi, Richard L. Knipe, Robertus Petrus Van Kampen, Anartz Unamuno
  • Publication number: 20140300249
    Abstract: Embodiments of the present invention generally relate to a MEMS device that is anchored using the layer that is deposited to form the cavity sealing layer and/or with the layer that is deposited to form the pull-off electrode. The switching element of the MEMS device will have a flexible or movable portion and will also have a fixed or anchor portion that is electrically coupled to ground. The layer that is used to seal the cavity in which the switching element is disposed can also be coupled to the fixed or anchor portion of the switching element to anchor the fixed or anchor portion within the cavity. Additionally, the layer that is used to form one of the electrodes may be used to provide additional leverage for anchoring the fixed or anchor portion within the cavity. In either situation, the movement of the flexible or movable portion is not hindered.
    Type: Application
    Filed: August 31, 2012
    Publication date: October 9, 2014
    Applicant: CAVENDISH KINETICS, INC.
    Inventors: Robertus Petrus Van Kampen, Mickael Renault, Vikram Joshi, Richard L. Knipe, Anartz Unamuno
  • Publication number: 20140238828
    Abstract: The present invention generally relates to a MEMS device having a plurality of cantilevers that are coupled together in an anchor region and/or by legs that are coupled in a center area of the cantilever. The legs ensure that each cantilever can move/release from above the RF electrode at the same voltage. The anchor region coupling matches the mechanical stiffness in all sections of the cantilever so that all of the cantilevers move together.
    Type: Application
    Filed: September 4, 2012
    Publication date: August 28, 2014
    Applicant: CAVENDISH KINETICS, INC.
    Inventors: Robertus Petrus Van Kampen, Anartz Unamuno, Richard L. Knipe, Roberto Gaddi, Rashed Mahameed
  • Publication number: 20140218839
    Abstract: The present invention generally relates to a variable capacitor for RF and microwave applications. The variable capacitor includes a bond pad that has a plurality of cells electrically coupled thereto. Each of the plurality of cells has a plurality of MEMS devices therein. The MEMS devices share a common RF electrode, one or more ground electrodes and one or more control electrodes. The RF electrode, ground electrodes and control electrodes are all arranged parallel to each other within the cells. The RF electrode is electrically connected to the one or more bond pads using a different level of electrical routing metal.
    Type: Application
    Filed: August 17, 2012
    Publication date: August 7, 2014
    Applicant: CAVENDISH KINETICS INC.
    Inventors: Roberto Gaddi, Robertus Petrus Van Kampen, Richard L. Knipe, Anartz Unamuno
  • Patent number: 8736404
    Abstract: The present invention generally relates to RF MEMS devices that are capable of hot switching. The RF MEMS devices, by utilizing one or more spring mechanisms, are capable of hot switching. In certain embodiments, two or more sets of springs may be used that become engaged at specific points in the displacement of the cantilever of the MEMS device. The springs allow for a significant increase in the release voltage for a given pull in landing voltage.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: May 27, 2014
    Assignee: Cavendish Kinetics Inc.
    Inventors: Richard L. Knipe, Robertus Petrus Van Kampen, Anartz Unamuno
  • Publication number: 20120068278
    Abstract: The present invention generally relates to MEMS devices and methods for their manufacture. The cantilever of the MEMS device may have a waffle-type microstructure. The waffle-type microstructure utilizes the support beams to impart stiffness to the microstructure while permitting the support beam to flex. The waffle-type microstructure permits design of rigid structures in combination with flexible supports. Additionally, compound springs may be used to create very stiff springs to improve hot-switch performance of MEMS devices. To permit the MEMS devices to utilize higher RF voltages, a pull up electrode may be positioned above the cantilever to help pull the cantilever away from the contact electrode.
    Type: Application
    Filed: September 20, 2011
    Publication date: March 22, 2012
    Inventors: RICHARD L. KNIPE, Robertus Petrus van Kampen, Anartz Unamuno, Roberto Gaddi
  • Publication number: 20110079495
    Abstract: The present invention generally relates to RF MEMS devices that are capable of hot switching. The RF MEMS devices, by utilizing one or more spring mechanisms, are capable of hot switching. In certain embodiments, two or more sets of springs may be used that become engaged at specific points in the displacement of the cantilever of the MEMS device. The springs allow for a significant increase in the release voltage for a given pull in landing voltage.
    Type: Application
    Filed: October 1, 2010
    Publication date: April 7, 2011
    Inventors: RICHARD L. KNIPE, ROBERTUS PETRUS VAN KAMPEN, ANARTZ UNAMUNO
  • Publication number: 20100116632
    Abstract: Embodiments disclosed herein generally include using a large number of small MEMS devices to replace the function of an individual larger MEMS device or digital variable capacitor. The large number of smaller MEMS devices perform the same function as the larger device, but because of the smaller size, they can be encapsulated in a cavity using complementary metal oxide semiconductor (CMOS) compatible processes. Signal averaging over a large number of the smaller devices allows the accuracy of the array of smaller devices to be equivalent to the larger device. The process is exemplified by considering the use of a MEMS based accelerometer switch array with an integrated analog to digital conversion of the inertial response. The process is also exemplified by considering the use of a MEMS based device structure where the MEMS devices operate in parallel as a digital variable capacitor.
    Type: Application
    Filed: November 9, 2009
    Publication date: May 13, 2010
    Inventors: CHARLES GORDON SMITH, Richard L. Knipe, Vikram Joshi, Roberto Gaddi, Anartz Unamuno, Robertus Petrus Van Kampen