Patents by Inventor Anastasios John Hart

Anastasios John Hart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180244027
    Abstract: Systems, devices, and related methods are disclosed for electromechanical transfer printing of 2D materials disposed on one substrate to another. The printing device can be configured to transfer a 2D material from a source substrate to the target substrate by applying a combination of mechanical and electrostatic forces to facilitate electromechanical adhesion between the 2D material layer and the target substrate. Some embodiments of the printing device can effect direct transfer printing of a 2D material from a source substrate to a target substrate without the use of etchants and adhesives.
    Type: Application
    Filed: February 28, 2018
    Publication date: August 30, 2018
    Inventors: Sanha Kim, Anastasios John Hart, Piran Ravichandran Kidambi, Dhanushkodi Durai Mariappan
  • Publication number: 20180236543
    Abstract: Devices, systems, and methods are directed to the use of nanoparticles for improving fabrication of three-dimensional objects formed through layer-by-layer delivery of an ink onto a powder of metal particles in a powder bed. More specifically, metal particles in the powder bed may be coated with nanoparticles to facilitate achieving a substantially uniform distribution of nanoparticles relative to metal particles in the three-dimensional objects being formed in the powder bed. Through such a substantially uniform distribution, the nanoparticles and the metal particles may interact with one another in a predictable manner useful for reducing variations in three-dimensional objects being fabricated and, also or instead, useful for reducing the likelihood of defects associated with subsequent processing of the three-dimensional objects.
    Type: Application
    Filed: February 21, 2018
    Publication date: August 23, 2018
    Inventors: Anastasios John Hart, Michael Andrew Gibson
  • Publication number: 20180229300
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer may be fabricated between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering. Interface layers suitable for manufacture with an additive manufacturing system may resist the formation of bonds between a support structure and an object during subsequent sintering processes.
    Type: Application
    Filed: April 17, 2018
    Publication date: August 16, 2018
    Inventors: Jonah Samuel Myerberg, Michael Andrew Gibson, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20180207722
    Abstract: Methods and apparatuses for additive manufacturing are described. A method for additive manufacturing may include exposing a layer of material on a build surface to one or more projections of laser energy including at least one line laser having a substantially linear shape. The intensity of the line laser may be modulated so as to cause fusion of the layer of material according to a desired pattern as the one or more projections of laser energy are scanned across the build surface.
    Type: Application
    Filed: July 18, 2016
    Publication date: July 26, 2018
    Applicant: VulcanForms Inc.
    Inventors: Martin C. FELDMANN, Anastasios John HART, Knute SVENSON, Andrey VYATSKIKH
  • Publication number: 20180154440
    Abstract: A variety of additive manufacturing techniques can be adapted to fabricate a substantially net shape object from a computerized model using materials that can be debound and sintered into a fully dense metallic part or the like. However, during sintering, the net shape will shrink as binder escapes and the base material fuses into a dense final part. If the foundation beneath the object does not shrink in a corresponding fashion, the resulting stresses throughout the object can lead to fracturing, warping or other physical damage to the object resulting in a failed fabrication. To address this issue, a variety of techniques are disclosed for substrates and build plates that contract in a manner complementary to the object during debinding and sintering.
    Type: Application
    Filed: January 11, 2018
    Publication date: June 7, 2018
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Ricardo Chin, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20180104972
    Abstract: Methods of printing nanoparticulate ink using nanoporous print stamps are disclosed. A nanoporous print stamp can include a substrate, a patterned arrangement of carbon nanotubes disposed on the substrate, and a secondary material disposed on the carbon nanotubes to reduce capillary-induced deformation of the patterned arrangement of carbon nanotubes when printing nanoparticulate ink. Some methods include loading a nanoporous print stamp with nanoparticulate colloidal ink such that the nanoparticulate colloidal ink is drawn into microstructures of the patterned arrangement of carbon nanotubes via capillary wicking. Nanoparticulate colloidal ink can include nanoparticles dispersed in a solution.
    Type: Application
    Filed: December 6, 2017
    Publication date: April 19, 2018
    Inventors: Anastasios John HART, Sanha KIM, Hossein SOJOUDI, Karen K. GLEASON
  • Patent number: 9937522
    Abstract: A particle can be discretely ejected from a orifice.
    Type: Grant
    Filed: December 5, 2014
    Date of Patent: April 10, 2018
    Assignees: Massachusetts Institute of Technology, UNIVERSITY OF MICHIGAN
    Inventors: Anastasios John Hart, Justin Douglas Beroz, Homayoon Maghsoodi
  • Publication number: 20180086641
    Abstract: Generally, the present invention provides methods for the production of materials comprising a plurality of nanostructures such as nanotubes (e.g., carbon nanotubes) and related articles. The plurality of nanostructures may be provided such that their long axes are substantially aligned and, in some cases, continuous from end to end of the sample. For example, in some cases, the nanostructures may be fabricated by uniformly growing the nanostructures on the surface of a substrate, such that the long axes are aligned and non-parallel to the substrate surface. The nanostructures may be, in some instances, substantially perpendicular to the substrate surface. In one set of embodiments, a force with a component normal to the long axes of the nanostructures may be applied to the substantially aligned nanostructures. The application of a force may result in a material comprising a relatively high volume fraction or mass density of nanostructures.
    Type: Application
    Filed: September 1, 2017
    Publication date: March 29, 2018
    Applicant: Massachusetts Institute of Technology
    Inventors: Enrique J. Garcia, Anastasios John Hart, Diego S. Saito, Brian L. Wardle, Hulya Cebeci
  • Publication number: 20180078936
    Abstract: The present disclosure is directed to the creation and/or manipulation of microfluidic systems and methods that can be formed in pre-existing modular blocks. Microfluidic paths can be formed in one or more blocks, and when multiple blocks are used, the blocks can be used together to form a path across the blocks. The paths can be sealed to prevent fluid leakage. The modular blocks can be readily available blocks which can then be individually customized to achieve various microfluidic design goals. The paths can be formed in outer surfaces of the blocks and/or disposed through a volume of the blocks. The modular blocks can have a uniform design across various block types, making it easy to reconfigure systems and/or remove and replace blocks and other components of the system. Methods for constructing such systems, and using such systems, are also provided.
    Type: Application
    Filed: March 30, 2017
    Publication date: March 22, 2018
    Inventors: Crystal Elaine Owens, Anastasios John Hart
  • Publication number: 20180071825
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, a printer is configured to further fabricate an interface layer between the object and the support structure in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Application
    Filed: November 3, 2017
    Publication date: March 15, 2018
    Inventors: Peter Alfons Schmitt, Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20180050390
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, a printer is configured to further fabricate an interface layer between the object and the support structure in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Application
    Filed: November 3, 2017
    Publication date: February 22, 2018
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Patent number: 9883685
    Abstract: Fused deposition model printer system. The system prints cold slurry substances and includes a source of a cold slurry substance with a print platform supported for at least three axes of motion under computer control. An extruder head system including a nozzle extrudes a stream of the cold slurry substance from the source onto the print platform, the extruder head including a heater. A cryogen line is provided having a perforated section for surrounding the continuous stream of the cold slurry substance to spray a cryogen onto the cold slurry substance to cool it upon extrusion. A chilled compartment or freezer is provided in which the print platform, extruder head system, and cryogen line are contained to maintain those components at a selected temperature whereby the cold slurry substance is printed to form a desired three dimensional shape.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: February 6, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Kristine A. Bunker, Jamison Go, Anastasios John Hart, Kyle N. Hounsell, Donghyun Kim
  • Publication number: 20170368759
    Abstract: Methods, systems, and devices for precision locating additively manufactured components for assembly and/or post processing manufacturing are provided for herein. In some embodiments, at least one component can be additively manufactured to include one or more kinematic features on one or more surfaces of the component. The kinematic feature(s) can be configured to engage complementary kinematic feature(s) formed in a second component so the two components can form an assembly. Alternatively, the kinematic feature(s) can be configured to engage complementary kinematic feature(s) associated with a post-processing machine such that the one or more post-processing actions can be performed on the component after the component is precisely located with respect to the machine by way of the kinematic features of the component and associated with the machine. A variety of systems and methods that utilize kinematic features are also provided.
    Type: Application
    Filed: June 28, 2017
    Publication date: December 28, 2017
    Applicant: Massachusetts Institute of Technology
    Inventors: Ryan Wade Penny, Anastasios John Hart
  • Patent number: 9833839
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is fabricated between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: December 5, 2017
    Assignee: Desktop Metal, Inc.
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170333994
    Abstract: Techniques are disclosed for fabricating multi-part assemblies. In particular, by forming release layers between features such as bearings or gear teeth, complex mechanical assemblies can be fabricated in a single additive manufacturing process.
    Type: Application
    Filed: July 12, 2017
    Publication date: November 23, 2017
    Inventors: Peter Alfons Schmitt, Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170326542
    Abstract: Nanoliter pipette assembly. The assembly includes a housing containing a working fluid in a working fluid chamber therein and includes a moveable piston within the housing, the piston moveable by a linear actuation mechanism for contact with the working fluid. A tip portion is provided that includes a diaphragm deformable to engage an inner portion of the tip. It is preferred that the diaphragm have a projecting three-dimensional structure for direct contact with a liquid.
    Type: Application
    Filed: May 9, 2017
    Publication date: November 16, 2017
    Inventors: Justin Beroz, Jacob Rothman, Adrian Samsel, Anastasios John Hart
  • Patent number: 9815118
    Abstract: Techniques are disclosed for fabricating multi-part assemblies. In particular, by forming release layers between features such as bearings or gear teeth, complex mechanical assemblies can be fabricated in a single additive manufacturing process.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: November 14, 2017
    Assignee: Desktop Metal, Inc.
    Inventors: Peter Alfons Schmitt, Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170322127
    Abstract: A device for collecting contaminants from water samples is provided. The device includes a solid sorbent that collects and stores the contaminants from water samples. The solid sorbent is configured to allow for the preservation of the stored contaminants. The concentrations of the contaminants in the water samples are determined via analysis of the solid sorbent or via elution of the stored contaminants from the sorbent and analysis of the eluate solution.
    Type: Application
    Filed: April 26, 2017
    Publication date: November 9, 2017
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Emily Hanhauser, Michael Bono, Anastasios John Hart, Rohit Karnik, Xiaoyuan Ren, Chintan Vaishnav
  • Publication number: 20170297098
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is formed between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Jonah Samuel Myerberg, Ricardo Fulop, Michael Andrew Gibson, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart
  • Publication number: 20170297097
    Abstract: Support structures are used in certain additive fabrication processes to permit fabrication of a greater range of object geometries. For additive fabrication processes with materials that are subsequently sintered into a final part, an interface layer is fabricated between the object and support in order to inhibit bonding between adjacent surfaces of the support structure and the object during sintering.
    Type: Application
    Filed: March 24, 2017
    Publication date: October 19, 2017
    Inventors: Michael Andrew Gibson, Jonah Samuel Myerberg, Ricardo Fulop, Matthew David Verminski, Richard Remo Fontana, Christopher Allan Schuh, Yet-Ming Chiang, Anastasios John Hart