Patents by Inventor Anastasios Skoulidas

Anastasios Skoulidas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11926795
    Abstract: Catalyst systems are provided for reforming of hydrocarbons, along with methods for using such catalyst systems. The catalyst systems can be deposited or otherwise coated on a surface or structure, such as a monolith, to achieve improved activity and/or structural stability. The metal oxide support layer can correspond to a thermally stable metal oxide support layer, such as a metal oxide support layer that is thermally phase stable at temperatures of 800° C. to 1600° C. The catalyst systems can be beneficial for use in cyclical reaction environments, such as reverse flow reactors or other types of reactors that are operated using flows in opposing directions and different times within a reaction cycle.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: March 12, 2024
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Changmin Chun, Wesley Sattler, Joseph E. Gatt, Keith R. Hajkowski, Everett J. O'Neal, William R. Gunther, Anastasios Skoulidas
  • Patent number: 11859133
    Abstract: Systems and methods are provided for using size-reversing materials in vessels where direct heating is used to at least partially provide heat for reforming reactions under cyclic reforming conditions. An example of a size-reversing material is the combination of NiO and Al2O3. It has been discovered that size-reversing materials can undergo a phase transition that can assist with re-dispersion of metal at elevated temperatures. This can assist with maintaining catalytic activity for reforming over longer time periods in the presence of cyclic reforming conditions.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: January 2, 2024
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Wesley Sattler, Keith R. Hajkowski, Changmin Chun, Partha Nandi, Vera Grankina, Joseph E. Gatt, Ning Ma, Anastasios Skoulidas, William R. Gunther, Everett J. O'Neal
  • Publication number: 20220112432
    Abstract: Systems and methods are provided for using size-reversing materials in vessels where direct heating is used to at least partially provide heat for reforming reactions under cyclic reforming conditions. An example of a size-reversing material is the combination of NiO and Al2O3. It has been discovered that size-reversing materials can undergo a phase transition that can assist with re-dispersion of metal at elevated temperatures. This can assist with maintaining catalytic activity for reforming over longer time periods in the presence of cyclic reforming conditions.
    Type: Application
    Filed: October 7, 2021
    Publication date: April 14, 2022
    Inventors: Wesley Sattler, Keith R. Hajkowski, Changmin Chun, Partha Nandi, Vera Grankina, Joseph E. Gatt, Ning Ma, Anastasios Skoulidas, William R. Gunther, Everett J. O'Neal
  • Publication number: 20220112082
    Abstract: Catalyst systems are provided for reforming of hydrocarbons, along with methods for using such catalyst systems. The catalyst systems can be deposited or otherwise coated on a surface or structure, such as a monolith, to achieve improved activity and/or structural stability. The metal oxide support layer can correspond to a thermally stable metal oxide support layer, such as a metal oxide support layer that is thermally phase stable at temperatures of 800° C. to 1600° C. The catalyst systems can be beneficial for use in cyclical reaction environments, such as reverse flow reactors or other types of reactors that are operated using flows in opposing directions and different times within a reaction cycle.
    Type: Application
    Filed: October 7, 2021
    Publication date: April 14, 2022
    Inventors: Changmin Chun, Wesley Sattler, Joseph E. Gatt, Keith R. Hajkowski, Everett J. O'Neal, William R. Gunther, Anastasios Skoulidas
  • Publication number: 20210219506
    Abstract: Systems and methods for algae processing and, more particularly, to systems and methods for having integrated solar steam systems. Trapped heated air accumulated within the solar steam system, such as a greenhouse-enclosed solar steam system, is swept over a cultivated algae slurry in order to facilitate drying thereof and increasing the thermal efficiency of a biofuel algae facility.
    Type: Application
    Filed: October 28, 2020
    Publication date: July 22, 2021
    Inventors: Everett J O'Neal, Anastasios Skoulidas, Patrick L Hanks
  • Patent number: 9500461
    Abstract: A method for determining the amount and rate of corrosion which has occurred on the surface of a process unit by measuring corrosion with a corrosion sensor and measuring at least one parameter inside the process unit. Corrosion on the internal surfaces of a process unit can then be determined.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: November 22, 2016
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Henry Alan Wolf, Alan M. Schliowitz, Manuel S. Alvarez, Anastasios Skoulidas, David Samuel Deutsch, Katie Walker
  • Patent number: 8919179
    Abstract: A system and method for optimizing the response of a metal loss sensor which is configured in a way that its insertion depth and orientation in the process fluid are adjustable. These adjustments affect local turbulence and thereby enable achieving a desired corrosion rate at the metal loss sensor. Corrosion rate comparison between the metal loss sensor and pressure containment boundary can be measured directly or indirectly by computing wall shear stresses at the sensor and the pressure containment boundary.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: December 30, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Henry Alan Wolf, Alan M. Schliowitz, Manuel S. Alvarez, Anastasios Skoulidas, David Samuel Deutsch, Richard J. Basile
  • Patent number: 8783286
    Abstract: Structures and methods are provided for improving the distribution of fluids between exit flows from a split junction, such as a tee-junction. The improved distribution of fluids can result in a more equal distribution of both gases and liquids between the exits of the junction. The improvement can be provided by using a baffle structure, such as an annular baffle structure, upstream from the desired junction. The baffle structures can improve the distribution of fluids in the exit flows in various manners, such as by reducing the amount of vorticity or “swirl” in the input flow to the junction or by reducing the separation of gases from liquids within a flow.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: July 22, 2014
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Ronald Suryo, Anastasios Skoulidas, David L. Vannauker
  • Patent number: 8728302
    Abstract: The present invention relates to an improved design for use in fluid cracking processes, preferably used in either a fluid catalytic cracking (“FCC”) process or a fluid coking process. In particular, the present invention relates to an apparatus and process for improving the separation and distributing spent catalyst and gases in a spent catalyst riser associated with a fluid cracking process, and most preferably for use in a spent catalyst riser associated with an FCC regenerator vessel. A novel catalyst distributor design and associated processes are presented herein which significantly improve combustion in the dense-phase fluidized catalyst bed of a regenerator and results in improved regenerator dense bed combustion and lower migration of oxygen into the regenerator overhead region.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: May 20, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Anastasios Skoulidas, Alvin U. Chen, Christopher Gordon Smalley, Robert Frank. Tammera, Norihiro Nakashima
  • Publication number: 20120152363
    Abstract: Structures and methods are provided for improving the distribution of fluids between exit flows from a split junction, such as a tee-junction. The improved distribution of fluids can result in a more equal distribution of both gases and liquids between the exits of the junction. The improvement can be provided by using a baffle structure, such as an annular baffle structure, upstream from the desired junction. The baffle structures can improve the distribution of fluids in the exit flows in various manners, such as by reducing the amount of vorticity or “swirl” in the input flow to the junction or by reducing the separation of gases from liquids within a flow.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 21, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ronald Suryo, Anastasios Skoulidas, David L. Vannauker
  • Publication number: 20110315603
    Abstract: The present invention relates to an improved design for use in fluid cracking processes, preferably used in either a fluid catalytic cracking (“FCC”) process or a fluid coking process. In particular, the present invention relates to an apparatus and process for improving the separation and distributing spent catalyst and gases in a spent catalyst riser associated with a fluid cracking process, and most preferably for use in a spent catalyst riser associated with an FCC regenerator vessel. A novel catalyst distributor design and associated processes are presented herein which significantly improve combustion in the dense-phase fluidized catalyst bed of a regenerator and results in improved regenerator dense bed combustion and lower migration of oxygen into the regenerator overhead region.
    Type: Application
    Filed: June 21, 2011
    Publication date: December 29, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Anastasios Skoulidas, Alvin U. Chen, Christopher Gordon Smalley, Robert Frank Tammera, Norihiro Nakashima
  • Patent number: 7858833
    Abstract: The present invention relates to a method for preparing linear alpha olefin comonomers, such as 1-butene, 1-hexene or 1-octene, from ethylene monomer. The comonomer generated is stored on site for use in a subsequent process, such as a polyethylene polymerization reactor. The method includes the steps of feeding an ethylene monomer, and a catalyst in a solvent to one or more comonomer synthesis reactors; reacting the ethylene monomer and the catalyst in solvent under reaction conditions to produce an effluent stream comprising unreacted ethylene monomer, a catalyst in a solvent, and comonomer; passing the effluent stream to one or more downstream gas/liquid phase separators to form a gas stream of unreacted ethylene monomer, and a liquid stream of comonomer, and catalyst in a solvent; recycling to the one or more comonomer synthesis reactors the unreacted ethylene monomer and a portion of the liquid stream; and storing a remaining portion of said liquid stream for subsequent processing of the comonomer.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: December 28, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John S. Buchanan, Krishnan Sankaranarayanan, Milind B. Ajinkya, Stephen M. Wood, Anastasios Skoulidas
  • Publication number: 20070185362
    Abstract: The present invention relates to a method for preparing olefin comonomers from ethylene. The comonomer generated can be used in a subsequent process, such as a polyethylene polymerization reactor. The comonomer generated can be transported, optionally without isolation or storage, to a polyethylene polymerization reactor. One method includes the steps of: feeding ethylene and a catalyst in a solvent/diluent to one or more comonomer synthesis reactors; reacting the ethylene and the catalyst under reaction conditions sufficient to produce an effluent comprising a desired comonomer; forming a gas stream comprising unreacted ethylene, and a liquid/bottoms stream comprising the comonomer, optionally by passing the effluent to one or more downstream gas/liquid phase separators; and purifying at least a portion of said liquid/bottoms stream by removing at least one of solid polymer, catalyst, and undesirable olefins therefrom.
    Type: Application
    Filed: January 17, 2007
    Publication date: August 9, 2007
    Inventors: James Lattner, John Walzer, Krishnan Sankaranarayanan, John Buchanan, Milind Ajinkya, Stephen Wood, Anastasios Skoulidas, Jay Reimers, Timothy Shaffer
  • Publication number: 20070185358
    Abstract: The present invention relates to a method for preparing linear alpha olefin comonomers, such as 1-butene, 1-hexene or 1-octene, from ethylene monomer. The comonomer generated is stored on site for use in a subsequent process, such as a polyethylene polymerization reactor. The method includes the steps of feeding an ethylene monomer, and a catalyst in a solvent to one or more comonomer synthesis reactors; reacting the ethylene monomer and the catalyst in solvent under reaction conditions to produce an effluent stream comprising unreacted ethylene monomer, a catalyst in a solvent, and comonomer; passing the effluent stream to one or more downstream gas/liquid phase separators to form a gas stream of unreacted ethylene monomer, and a liquid stream of comonomer, and catalyst in a solvent; recycling to the one or more comonomer synthesis reactors the unreacted ethylene monomer and a portion of the liquid stream; and storing a remaining portion of said liquid stream for subsequent processing of the comonomer.
    Type: Application
    Filed: February 3, 2006
    Publication date: August 9, 2007
    Inventors: John Buchanan, Krishnan Sankaranarayanan, Milind Ajinkya, Stephen Wood, Anastasios Skoulidas