Patents by Inventor Anatoli Morozov

Anatoli Morozov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8596281
    Abstract: The invention relates to devices, compositions and methods used to improve vision and/or to treat an eye lens disease or condition. In some embodiments, the invention relates to altering or removing eye lens material for the treatment of presbyopia. In additional embodiments, the invention relates to placing compositions in a lens of an eye to improve elasticity of the lens both therapeutically by improving elasticity and/or improving refractive properties and/or prophylactically by preventing renewed stiffening and/or renewed deterioration of the lens refractive properties. In further embodiments, the invention relates to devices and methods of obtaining and analyzing data for use in altering the lens to optimize its elasticity and/or refractive properties.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: December 3, 2013
    Inventors: Szymon Suckewer, Alexander Smits, Peter Hersh, Richard Register, Gary Kunkel, Anatoli Morozov
  • Patent number: 8382744
    Abstract: A method and device for flapless, intrastromal keratomileusis for the correction of myopia, hyperopia and astigmatism, i.e., for vision correction by corneal reshaping without creating a flap. Ultra-short laser pulses are used to create a temporary micro-channel extending to an end point located within the cornea. A second series of ultra-short laser pulses are then delivered to photo-ablate material in the vicinity of the micro-channel end-point. The photo-ablated material may exit through the micro-channel used to deliver the laser pulses, or via a separate micro-channel. With the micro-channel oriented substantially normal to the optical axis of the cornea, and by continuing to supply the ultra-short laser pulses in the appropriate number while moving the point of ablation along the micro-channel, the photo-ablation of the intrastromal tissue may continue in a controlled fashion and the cornea reshaped in a predetermined manner without creating a flap.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: February 26, 2013
    Inventors: Szymon Suckewer, Peter Hersh, Alexander Smits, Anatoli Morozov
  • Publication number: 20100076417
    Abstract: The invention relates to devices, compositions and methods used to improve vision and/or to treat an eye lens disease or condition. In some embodiments, the invention relates to altering or removing eye lens material for the treatment of presbyopia. In additional embodiments, the invention relates to placing compositions in a lens of an eye to improve elasticity of the lens both therapeutically by improving elasticity and/or improving refractive properties and/or prophylactically by preventing renewed stiffening and/or renewed deterioration of the lens refractive properties. In further embodiments, the invention relates to devices and methods of obtaining and analyzing data for use in altering the lens to optimize its elasticity and/or refractive properties.
    Type: Application
    Filed: March 5, 2007
    Publication date: March 25, 2010
    Inventors: Szymon S. Suckewer, Alexander Smits, Peter Hersh, Richard Register, Gary Kunkel, Anatoli Morozov
  • Publication number: 20080051772
    Abstract: A method and device for flapless, intrastromal keratomileusis for the correction of myopia, hyperopia and astigmatism, i.e., for vision correction by corneal reshaping without creating a flap. Ultra-short laser pulses are used to create a temporary micro-channel extending to an end point located within the cornea. A second series of ultra-short laser pulses are then delivered to photo-ablate material in the vicinity of the micro-channel end-point. The photo-ablated material may exit through the micro-channel used to deliver the laser pulses, or via a separate micro-channel. With the micro-channel oriented substantially normal to the optical axis of the cornea, and by continuing to supply the ultra-short laser pulses in the appropriate number while moving the point of ablation along the micro-channel, the photo-ablation of the intrastromal tissue may continue in a controlled fashion and the cornea reshaped in a predetermined manner without creating a flap.
    Type: Application
    Filed: August 22, 2007
    Publication date: February 28, 2008
    Inventors: Szymon Suckewer, Peter Hersh, Alexander Smits, Anatoli Morozov
  • Publication number: 20030210862
    Abstract: A MUX, DEMUX or integrated combination MUX/DEMUX utilizing a discrete dispersion device (herein referred to as “D3” device), which includes at least one input port, at least one output port and an optical planar waveguide comprising a synergetic photonic bandgap quasi-crystal (“PBQC”) for guiding and supporting optical signals in a work bandwidth. The D3 device achieves a flat-top response for each channel, high channel isolation and background noise suppression.
    Type: Application
    Filed: May 7, 2002
    Publication date: November 13, 2003
    Inventors: Vladimir Yankov, Igor Ivonin, Michael Spector, Andrei Talapov, Leonid Polonskiy, Sergey Babin, Alexander Goltsov, Vladimir Goloviznine, Anatoli Morozov, Natalya Polonskaya
  • Publication number: 20030206681
    Abstract: The present invention provides a photonic multi-bandgap structure, herein also referred to as photonic bandgap quasi-crystal (“PBQC”), that can direct light, having wavelength components within a selected passband (&Dgr;&lgr;), from an input port, to a predefined output port, while providing an integrating element for Planar Lightwave Circuits. A photonic bandgap quasi-crystal of the invention combines in a planar waveguide spectrally selective properties of gratings, focusing properties of elliptical mirrors, superposition properties of thick holograms, photonic bandgaps of periodic structures, and flexibility of binary lithography. A photonic structure of the invention can be utilized, for example, as an integrating spectrally sensitive element in a variety of optical devices that can include, but are not limited to, optical switches, optical multiplexer/demultiplexers, multi-wavelength lasers, and channel monitors in Wavelength Division Mulitplexing (WDM) telecommunications system.
    Type: Application
    Filed: June 11, 2002
    Publication date: November 6, 2003
    Applicant: Vyoptics, Inc.
    Inventors: Leonid Polonskiy, Vladimir Yankov, Michael Spector, Andrei Talapov, Sergey Babin, Alexander Goltsov, Anatoli Morozov, Natalya Polonskaya
  • Publication number: 20030206694
    Abstract: The present invention provides a photonic multi-bandgap structure, herein also referred to as photonic bandgap quasi-crystal (“PBQC”), that can direct light, having wavelength components within a selected passband (&Dgr;&lgr;), from an input port, to a predefined output port, while providing an integrating element for Planar Lightwave Circuts. A photonic bandgap quasi-crystal of the invention combines in a planar waveguide spectrally selective properties of gratings, focusing properties of elliptical mirrors, superposition properties of thick holograms, photonic bandgaps of periodic structures, and flexibility of binary lithography. A photonic structure of the invention can be utilized, for example, as an integrating spectrally sensitive element in a variety of optical devices that can include, but are not limited to, optical switches, optical multiplexer/demultiplexers, multi-wavelength lasers, and channel monitors in Wavelength Division Multiplexing (WDM) telecommunications system.
    Type: Application
    Filed: May 2, 2002
    Publication date: November 6, 2003
    Applicant: Vyoptics, Inc.
    Inventors: Sergey Babin, Alexander Goltsov, Vladimir Goloviznine, Anatoli Morozov, Natalya Polonskaya, Vladimir Yankov, Igor Ivonin, Michael Spector, Andrei Talapov, Leonid Polonskiy, Robert Paul Dahlgren