Patents by Inventor Anatoli N. Verentchikov

Anatoli N. Verentchikov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10141175
    Abstract: A multi-reflecting, time-of-flight (MR-TOF) mass spectrometer including two quasi-planar electrostatic ion mirrors extended along drill direction (Z) and formed of parallel electrodes, separated by a field free region. The MR-TOF includes a pulsed ion source to release ion packets at a small angle to X-direction which is orthogonal to the drill direction Z. Ion packets are reflected between ion mirrors and drill along the drift direction. The mirrors are arranged to provide time-of-flight focusing ion packets on the receiver. The MR-TOF mirrors provide spatial focusing M the Y-direction orthogonal to both drift direction Z and on injection direction X. In a preferred embodiment, at least one mirror has a feature providing periodic spatial focusing of ion packets in the drift Z-direction.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: November 27, 2018
    Assignee: LECO Corporation
    Inventors: Anatoli N. Verentchikov, Mikhail I. Yavor
  • Publication number: 20160358764
    Abstract: A multi-reflecting, time-of-flight (MR-TOF) mass spectrometer including two quasi-planar electrostatic ion mirrors extended along drill direction (Z) and formed of parallel electrodes, separated by a field free region. The MR-TOF includes a pulsed ion source to release ion packets at a small angle to X-direction which is orthogonal to the drill direction Z. Ion packets are reflected between ion mirrors and drill along the drift direction. The mirrors are arranged to provide time-of-flight focusing ion packets on the receiver. The MR-TOF mirrors provide spatial focusing M the Y-direction orthogonal to both drift direction Z and on injection direction X. In a preferred embodiment, at least one mirror has a feature providing periodic spatial focusing of ion packets in the drift Z-direction.
    Type: Application
    Filed: August 23, 2016
    Publication date: December 8, 2016
    Applicant: LECO Corporation
    Inventors: Anatoli N. Verentchikov, Mikhail I. Yavor
  • Patent number: 9425034
    Abstract: A multi-reflecting time-of-flight (MR-TOF) mass spectrometer, which includes two quasi-planar electrostatic ion mirrors extended along drift direction (Z) and is formed of parallel electrodes, separated by a field-free region. The MR-TOF includes a pulsed ion source to release ion packets at a small angle to X-direction which is orthogonal to the drift direction Z. Ion packets are reflected between ion mirrors and drift along the drift direction. The mirrors are arranged to provide time-of-flight focusing ion packets on the receiver. The MR-TOF mirrors provide spatial focusing in the Y-direction orthogonal to both drift direction Z and ion injection direction X. In a preferred embodiment, at least one mirror has a feature providing periodic spatial focusing of ion packets in the drift Z-direction.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: August 23, 2016
    Assignee: LECO Corporation
    Inventors: Anatoli N. Verentchikov, Mikhail I. Yavor
  • Patent number: 8373120
    Abstract: Ion manipulation systems include ion repulsion by an RF field penetrating through a mesh. Another comprises trapping ions in a symmetric RF field around a mesh. The system uses macroscopic parts, or readily available fine meshes, or miniaturized devices made by MEMS, or flexible PCB methods. One application is ion transfer from gaseous ion sources with focusing at intermediate and elevated gas pressures. Another application is the formation of pulsed ion packets for TOF MS within trap array. Such trapping is preferably accompanied by pulsed switching of RF field and by gas pulses, preferably formed by pulsed vapor desorption. Ion guidance, ion flow manipulation, trapping, preparation of pulsed ion packets, confining ions during fragmentation or exposure to ion to particle reactions and for mass separation are disclosed. Ion chromatography employs an ion passage within a gas flow and through a set of multiple traps with a mass dependent well depth.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: February 12, 2013
    Assignee: LECO Corporation
    Inventor: Anatoli N. Verentchikov
  • Publication number: 20110192969
    Abstract: Ion manipulation systems include ion repulsion by an RF field penetrating through a mesh. Another comprises trapping ions in a symmetric RF field around a mesh. The system uses macroscopic parts, or readily available fine meshes, or miniaturized devices made by MEMS, or flexible PCB methods. One application is ion transfer from gaseous ion sources with focusing at intermediate and elevated gas pressures. Another application is the formation of pulsed ion packets for TOF MS within trap array. Such trapping is preferably accompanied by pulsed switching of RF field and by gas pulses, preferably formed by pulsed vapor desorption. Ion guidance, ion flow manipulation, trapping, preparation of pulsed ion packets, confining ions during fragmentation or exposure to ion to particle reactions and for mass separation are disclosed. Ion chromatography employs an ion passage within a gas flow and through a set of multiple traps with a mass dependent well depth.
    Type: Application
    Filed: July 28, 2008
    Publication date: August 11, 2011
    Applicant: Leco Corporation
    Inventor: Anatoli N. Verentchikov
  • Publication number: 20110186729
    Abstract: A multi-reflecting time-of-flight (MR-TOF) mass spectrometer, which includes two quasi-planar electrostatic ion mirrors extended along drift direction (Z) and is formed of parallel electrodes, separated by a field-free region. The MR-TOF includes a pulsed ion source to release ion packets at a small angle to X-direction which is orthogonal to the drift direction Z. Ion packets are reflected between ion mirrors and drift along the drift direction. The mirrors are arranged to provide time-of-flight focusing ion packets on the receiver. The MR-TOF mirrors provide spatial focusing in the Y-direction orthogonal to both drift direction Z and ion injection direction X. In a preferred embodiment, at least one mirror has a feature providing periodic spatial focusing of ion packets in the drift Z-direction.
    Type: Application
    Filed: July 16, 2008
    Publication date: August 4, 2011
    Inventors: Anatoli N. Verentchikov, Mikhail I. Yavor
  • Patent number: 7772547
    Abstract: The disclosed apparatus includes a multi-reflecting time-of-flight mass spectrometer (MR-TOF MS) and an orthogonal accelerator. To improve the duty cycle of the ion injection at a low repetition rate dictated by a long flight in the MR-TOF MS, multiple measures may be taken. The incoming ion beam and the accelerator may be oriented substantially transverse to the ion path in the MR-TOF, while the initial velocity of the ion beam is compensated by tilting the accelerator and steering the beam for the same angle. To further improve the duty cycle of any multi-reflecting or multi-turn mass spectrometer, the beam may be time-compressed by modulating the axial ion velocity with an ion guide. The residence time of the ions in the accelerator may be improved by trapping the beam within an electrostatic trap. Apparatuses with a prolonged residence time in the accelerator provide improvements in both sensitivity and resolution.
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: August 10, 2010
    Assignee: Leco Corporation
    Inventor: Anatoli N. Verentchikov
  • Patent number: 7582864
    Abstract: An imbalanced radio frequency (RF) field creates a retarding barrier near the exit aperture of a multipole ion guide, in combination with the extracting DC field such that the barrier provides an m/z dependent cut of ion sampling. Contrary to the prior art, the mass dependent sampling provides a well-conditioned ion beam suitable for other mass spectrometric devices. The mass selective sampling is suggested for improving duty cycle of o-TOF MS, for injecting ions into a multi-reflecting TOF MS in a zoom mode, for parallel MS-MS analysis in a trap-TOF MS, as well as for moderate mass filtering in fragmentation cells and ion reactors. With the aid of resonant excitation, the mass selective ion sampling is suggested for mass analysis.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: September 1, 2009
    Assignee: Leco Corporation
    Inventor: Anatoli N. Verentchikov
  • Patent number: 7326925
    Abstract: The present invention relates generally to a multi-reflecting time-of-flight mass spectrometer (MR TOF MS). To improve mass resolving power of a planar MR TOF MS, a spatially isochronous and curved interface may be used for ion transfer in and out of the MR TOF analyzer. One embodiment comprises a planar grid-free MR TOF MS with periodic lenses in the field-free space, a linear ion trap for converting ion flow into pulses and a C-shaped isochronous interface made of electrostatic sectors. The interface allows transferring ions around the edges and fringing fields of the ion mirrors without introducing significant time spread. The interface may also provide energy filtering of ion packets. The non-correlated turn-around time of ion trap converter may be reduced by using a delayed ion extraction from the ion trap and excessive ion energy is filtered in the curved interface.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: February 5, 2008
    Assignee: Leco Corporation
    Inventors: Anatoli N. Verentchikov, Mikhail Yavor
  • Patent number: 7196324
    Abstract: To provide comprehensive MS—MS analysis, a time-nested separation is employed using two time-of-flight (TOF) mass spectrometers. Parent ions are separated in a slow and long TOF1, operating at low ion energy (1 to 100eV), and fragment ions are mass analyzed in a fast and short TOF2, operating at much higher keV energy. A low energy fragmentation cell between TOF1 and TOF2 is tailored to accelerate fragmentation and dampening steps, mostly by shortening the cell and employing higher gas pressure. Slow separation in TOF1 becomes possible with an introduction of novel TOF1 analyzers. Higher performance is expected with the use of novel hybrid TOF1 analyzers, combining radio frequency (RF) and quadratic DC fields. An RF field retains low-energy ions within a TOF1 analyzer, while a quadratic DC field improves resolution by compensating for a large relative energy spread.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: March 27, 2007
    Assignee: LECO Corporation
    Inventor: Anatoli N. Verentchikov
  • Patent number: 6534764
    Abstract: A tandem mass spectrometer is disclosed having a collisional damping cell that slows down and adapts an ion beam, from a time-of-flight mass spectrometer (TOF MS) to a second mass spectrometer, preferably an orthogonal TOF MS. The cell provides a substantial damping of the energy of the ions in multiple collisions with a gas. An RF-only quadrupole is used to spatially focus the ion beam in the collision cell. As result, the operation of second mass spectrometer can be decoupled from the rest of the instrument, or in some cases with the energy being sufficiently damped the pulsed nature of the primary ion beam can be partially preserved and used to enhance the sensitivity of the second mass spectrometer. An ion selector passes only stable parent ions of interest, thereby introducing ions into the cell at a well controlled low energy. The ion beam can be injected into the collision cell with or without separation as well as with or without fragmentation.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: March 18, 2003
    Assignee: PerSeptive Biosystems
    Inventors: Anatoli N. Verentchikov, Marvin L. Vestal, Kevin M. Hayden
  • Patent number: 6504150
    Abstract: A mass spectrometer instrument for determining the molecular weight of labile molecules of biological importance, in particular heavy molecules, such as proteins, peptides or DNA oligomers, is disclosed. The instrument includes a MALDI ion source that is enclosed in a chamber with an inlet for admitting a gas and an ion sampling aperture for limiting gas flow from the chamber. The elevated pressure of the source in the range from 0.1 to 10 torr causes low energy collisions between the gas and the ions that can cause rapid collisional cooling of the excited ions, thereby improving the stability of the produced ions. The formation of clusters of ions (e.g., protein ions) with matrix materials is broken without fragmenting the ions by increasing the downstream gas temperature to between 150 and 250° C.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: January 7, 2003
    Assignee: PerSeptive Biosystems, Inc.
    Inventors: Anatoli N. Verentchikov, Marvin L. Vestal, Igor P. Smirnov
  • Patent number: 6483109
    Abstract: A highly sensitive multiple stage (MSn) mass spectrometer is disclosed, capable of eliminating losses of ions during the isolation stage. Ions of interest are isolated (by m/z value) without rejecting ions of other m/z values, permitting the selected ions to be dissociated, while the rest of the ion population is available for subsequent isolation, dissociation and analysis of fragment ions. One preferred instrument includes a pulsed ion source coupled with a linear array of mass selective ion trap devices, at least one trap being coupled to an external ion detector. Each ion trap is configured with a storing cell for ion trapping interspersed between a pair of guarding cells, all aligned along their z axis. Radio frequency (RF) and direct current (DC) voltages are applied to electrodes of the ion trap device to retain ions within the storing cells.
    Type: Grant
    Filed: August 25, 2000
    Date of Patent: November 19, 2002
    Assignee: University of New Hampshire
    Inventors: Bruce B. Reinhold, Anatoli N. Verentchikov