Patents by Inventor Anchuan Wang

Anchuan Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200013628
    Abstract: Exemplary etching methods may include flowing a hydrogen-containing precursor into a substrate processing region of a semiconductor processing chamber. The methods may include flowing a fluorine-containing precursor into the substrate processing region. The methods may include contacting a substrate housed in the substrate processing region with the hydrogen-containing precursor and the fluorine-containing precursor. The substrate may define a trench, and a layer of an oxygen-containing material may be disposed within the trench and exposed on the substrate. The methods may include halting delivery of the hydrogen-containing precursor. The methods may also include removing the oxygen-containing material.
    Type: Application
    Filed: July 6, 2018
    Publication date: January 9, 2020
    Inventors: Zhijun Chen, Chia-Ling Kao, Anchuan Wang, Nitin Ingle
  • Publication number: 20200013632
    Abstract: Exemplary etching methods may include flowing a hydrogen-containing precursor into a substrate processing region of a semiconductor processing chamber. The methods may include flowing a fluorine-containing precursor into the substrate processing region. The methods may include contacting a substrate housed in the substrate processing region with the hydrogen-containing precursor and the fluorine-containing precursor. The substrate may define a trench. A spacer may be formed along a sidewall of the trench, and the spacer may include a plurality of layers including a first layer of a carbon-containing material, a second layer of an oxygen-containing material, and a third layer of a carbon-containing material. The second layer of the spacer may be disposed between the first layer and third layer of the spacer. The methods may also include removing the oxygen-containing material.
    Type: Application
    Filed: July 6, 2018
    Publication date: January 9, 2020
    Inventors: Zhijun Chen, Chia-Ling Kao, Anchuan Wang, Nitin Ingle
  • Patent number: 10497579
    Abstract: Exemplary cleaning or etching methods may include flowing a fluorine-containing precursor into a remote plasma region of a semiconductor processing chamber. Methods may include forming a plasma within the remote plasma region to generate plasma effluents of the fluorine-containing precursor. The methods may also include flowing the plasma effluents into a processing region of the semiconductor processing chamber. A substrate may be positioned within the processing region, and the substrate may include a region of exposed oxide and a region of exposed metal. Methods may also include providing a hydrogen-containing precursor to the processing region. The methods may further include removing at least a portion of the exposed oxide.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: December 3, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Zhijun Chen, Lin Xu, Anchuan Wang, Nitin Ingle
  • Patent number: 10465294
    Abstract: Methods are described herein for etching metal films which are difficult to volatize. The methods include exposing a metal film to a chlorine-containing precursor (e.g. Cl2). Chlorine is then removed from the substrate processing region. A carbon-and-nitrogen-containing precursor (e.g. TMEDA) is delivered to the substrate processing region to form volatile metal complexes which desorb from the surface of the metal film. The methods presented remove metal while very slowly removing the other exposed materials. A thin metal oxide layer may be present on the surface of the metal layer, in which case a local plasma from hydrogen may be used to remove the oxygen or amorphize the near surface region, which has been found to increase the overall etch rate.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: November 5, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Xikun Wang, Jie Liu, Anchuan Wang, Nitin K. Ingle, Jeffrey W. Anthis, Benjamin Schmiege
  • Patent number: 10468267
    Abstract: Exemplary cleaning or etching methods may include flowing a fluorine-containing precursor into a remote plasma region of a semiconductor processing chamber. Methods may include forming a plasma within the remote plasma region to generate plasma effluents of the fluorine-containing precursor. The methods may also include flowing the plasma effluents into a processing region of the semiconductor processing chamber. A substrate may be positioned within the processing region, and the substrate may include a region of exposed oxide and a region of exposed metal. Methods may also include providing a hydrogen-containing precursor to the processing region. The methods may further include removing at least a portion of the exposed oxide.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: November 5, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Zhijun Chen, Lin Xu, Anchuan Wang, Nitin Ingle
  • Publication number: 20190326123
    Abstract: Exemplary methods for selectively removing silicon (e.g. polysilicon) from a patterned substrate may include flowing a fluorine-containing precursor into a substrate processing chamber to form plasma effluents. The plasma effluents may remove silicon (e.g. polysilicon, amorphous silicon or single crystal silicon) at significantly higher etch rates compared to exposed silicon oxide, silicon nitride or other dielectrics on the substrate. The methods rely on the temperature of the substrate in combination with some conductivity of the surface to catalyze the etch reaction rather than relying on a gas phase source of energy such as a plasma.
    Type: Application
    Filed: June 10, 2019
    Publication date: October 24, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Zihui Li, Rui Cheng, Anchuan Wang, Nitin K. Ingle, Abhijit Basu Mallick
  • Patent number: 10424464
    Abstract: Embodiments of the present technology may include a method of etching a substrate. The method may include striking a plasma discharge in a plasma region. The method may also include flowing a fluorine-containing precursor into the plasma region to form a plasma effluent. The plasma effluent may flow into a mixing region. The method may further include introducing a hydrogen-and-oxygen-containing compound into the mixing region without first passing the hydrogen-and-oxygen-containing compound into the plasma region. Additionally, the method may include reacting the hydrogen-and-oxygen-containing compound with the plasma effluent in the mixing region to form reaction products. The reaction products may flow through a plurality of openings in a partition to a substrate processing region. The method may also include etching the substrate with the reaction products in the substrate processing region.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: September 24, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Lin Xu, Zhijun Chen, Anchuan Wang, Son T. Nguyen
  • Patent number: 10424463
    Abstract: Embodiments of the present technology may include a method of etching a substrate. The method may include striking a plasma discharge in a plasma region. The method may also include flowing a fluorine-containing precursor into the plasma region to form a plasma effluent. The plasma effluent may flow into a mixing region. The method may further include introducing a hydrogen-and-oxygen-containing compound into the mixing region without first passing the hydrogen-and-oxygen-containing compound into the plasma region. Additionally, the method may include reacting the hydrogen-and-oxygen-containing compound with the plasma effluent in the mixing region to form reaction products. The reaction products may flow through a plurality of openings in a partition to a substrate processing region. The method may also include etching the substrate with the reaction products in the substrate processing region.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: September 24, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Lin Xu, Zhijun Chen, Anchuan Wang, Son T. Nguyen
  • Publication number: 20190267248
    Abstract: Exemplary etching methods may include flowing a fluorine-containing precursor into a substrate processing region of a semiconductor processing chamber. The methods may include flowing a hydrogen-containing precursor into the substrate processing region. The methods may include contacting a substrate housed in the substrate processing region with the fluorine-containing precursor and the hydrogen-containing precursor. The substrate may include a trench or recessed feature, and a spacer may be formed along a sidewall of the trench or feature. The spacer may include a plurality of layers including a first layer of a carbon-containing or nitrogen-containing material, a second layer of an oxygen-containing material, and a third layer of a carbon-containing or nitrogen-containing material. The second layer of the spacer may be disposed between the first layer and third layer of the spacer. The methods may also include removing the oxygen-containing material.
    Type: Application
    Filed: February 28, 2019
    Publication date: August 29, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Zhijun Chen, Lin Xu, Anchuan Wang
  • Patent number: 10319603
    Abstract: Exemplary methods for laterally etching silicon nitride may include flowing a fluorine-containing precursor and an oxygen-containing precursor into a remote plasma region of a semiconductor processing chamber. The methods may include forming a plasma within the remote plasma region to generate plasma effluents of the fluorine-containing precursor and the oxygen-containing precursor. The methods may also include flowing the plasma effluents into a processing region of the semiconductor processing chamber. A substrate may be positioned within the processing region, and the substrate may include a trench formed through stacked layers including alternating layers of silicon nitride and silicon oxide. The methods may also include laterally etching the layers of silicon nitride from sidewalls of the trench while substantially maintaining the layers of silicon oxide. The layers of silicon nitride may be laterally etched less than 10 nm from the sidewalls of the trench.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: June 11, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Zhijun Chen, Jiayin Huang, Anchuan Wang, Nitin Ingle
  • Patent number: 10319600
    Abstract: Exemplary methods for selectively removing silicon (e.g. polysilicon) from a patterned substrate may include flowing a fluorine-containing precursor into a substrate processing chamber to form plasma effluents. The plasma effluents may remove silicon (e.g. polysilicon, amorphous silicon or single crystal silicon) at significantly higher etch rates compared to exposed silicon oxide, silicon nitride or other dielectrics on the substrate. The methods rely on the temperature of the substrate in combination with some conductivity of the surface to catalyze the etch reaction rather than relying on a gas phase source of energy such as a plasma.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: June 11, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Zihui Li, Rui Cheng, Anchuan Wang, Nitin K. Ingle, Abhijit Basu Mallick
  • Patent number: 10283324
    Abstract: Exemplary methods for laterally etching silicon nitride may include flowing oxygen-containing plasma effluents into a processing region of a semiconductor processing chamber. A substrate positioned within the processing region may include a trench formed through stacked layers including alternating layers of silicon nitride and silicon oxide. The methods may include passivating exposed surfaces of the silicon nitride with the oxygen-containing plasma effluents. The methods may include flowing a fluorine-containing precursor into the remote plasma region while maintaining the flow of the oxygen-containing precursor. The methods may include forming plasma effluents of the fluorine-containing precursor and the oxygen-containing precursor. The methods may include flowing the plasma effluents into the processing region of the semiconductor processing chamber. The methods may also include laterally etching the layers of silicon nitride from sidewalls of the trench.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: May 7, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Zhijun Chen, Anchuan Wang, Jiayin Huang
  • Publication number: 20190122865
    Abstract: Exemplary methods for laterally etching silicon nitride may include flowing oxygen-containing plasma effluents into a processing region of a semiconductor processing chamber. A substrate positioned within the processing region may include a trench formed through stacked layers including alternating layers of silicon nitride and silicon oxide. The methods may include passivating exposed surfaces of the silicon nitride with the oxygen-containing plasma effluents. The methods may include flowing a fluorine-containing precursor into the remote plasma region while maintaining the flow of the oxygen-containing precursor. The methods may include forming plasma effluents of the fluorine-containing precursor and the oxygen-containing precursor. The methods may include flowing the plasma effluents into the processing region of the semiconductor processing chamber. The methods may also include laterally etching the layers of silicon nitride from sidewalls of the trench.
    Type: Application
    Filed: October 24, 2017
    Publication date: April 25, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Zhijun Chen, Anchuan Wang, Jiayin Huang
  • Patent number: 10249507
    Abstract: The present disclosure provides methods for etching features in a silicon material includes performing a remote plasma process formed from an etching gas mixture including chlorine containing gas to remove a silicon material disposed on a substrate.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: April 2, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Zihui Li, Xing Zhong, Anchuan Wang, Nitin K. Ingle
  • Patent number: 10204796
    Abstract: The present disclosure provides methods for etching a silicon material in a device structure in semiconductor applications. In one example, a method for etching features in a silicon material includes performing a remote plasma process formed from an etching gas mixture including HF gas without nitrogen etchants to remove a silicon material disposed on a substrate.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: February 12, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Nitin K. Ingle, Anchuan Wang, Zihui Li, Mikhail Korolik
  • Patent number: 10204795
    Abstract: A method and apparatus for processing a semiconductor substrate are described herein. A process system described herein includes a plasma source and a flow distribution plate. A method described herein includes generating fluorine radicals or ions, delivering the fluorine radicals or ions through one or more plasma blocking screens to a volume defined by the flow distribution plate and one of one or more plasma blocking screens, delivering oxygen and hydrogen to the volume, mixing the oxygen and hydrogen with fluorine radicals or ions to form hydrogen fluoride, flowing hydrogen fluoride through the flow distribution plate, and etching a substrate using bifluoride. The concentration of fluorine radicals or ions on the surface of the substrate is reduced to less than about two percent.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: February 12, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Jiayin Huang, Lin Xu, Zhijun Chen, Anchuan Wang
  • Patent number: 10186428
    Abstract: Exemplary cleaning or etching methods may include flowing a fluorine-containing precursor into a remote plasma region of a semiconductor processing chamber. Methods may include forming a plasma within the remote plasma region to generate plasma effluents of the fluorine-containing precursor. The methods may also include flowing the plasma effluents into a processing region of the semiconductor processing chamber. A substrate may be positioned within the processing region, and the substrate may include a region of exposed oxide. Methods may also include providing a hydrogen-containing precursor to the processing region. The methods may further include removing at least a portion of the exposed oxide while maintaining a relative humidity within the processing region below about 50%. Subsequent to the removal, the methods may include increasing the relative humidity within the processing region to greater than or about 50%. The methods may further include removing an additional amount of the exposed oxide.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: January 22, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Lin Xu, Zhijun Chen, Jiayin Huang, Anchuan Wang
  • Patent number: 10170336
    Abstract: Embodiments of the present technology may include a method of etching. The method may include flowing a gas through a plasma to form plasma effluents. The method may also include reacting plasma effluents with a first layer defining a first feature. The first feature may include a first sidewall, a second sidewall, and a bottom. The first sidewall, the second sidewall, and the bottom may include the first layer. The first layer may be characterized by a first thickness on the sidewall. The method may further include forming a second layer from the reaction of the plasma effluents with the first layer. The first layer may be replaced by the second layer. The second layer may be characterized by a second thickness. The second thickness may be greater than or equal to the first thickness. The method may also include removing the second layer to expose a third layer.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: January 1, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Zihui Li, Chia-Ling Kao, Anchuan Wang, Nitin K. Ingle
  • Publication number: 20180350619
    Abstract: Exemplary cleaning or etching methods may include flowing a fluorine-containing precursor into a remote plasma region of a semiconductor processing chamber. Methods may include forming a plasma within the remote plasma region to generate plasma effluents of the fluorine-containing precursor. The methods may also include flowing the plasma effluents into a processing region of the semiconductor processing chamber. A substrate may be positioned within the processing region, and the substrate may include a region of exposed oxide and a region of exposed metal. Methods may also include providing a hydrogen-containing precursor to the processing region. The methods may further include removing at least a portion of the exposed oxide.
    Type: Application
    Filed: October 24, 2017
    Publication date: December 6, 2018
    Applicant: Applied Materials, Inc.
    Inventors: Zhijun Chen, Lin Xu, Anchuan Wang, Nitin Ingle
  • Publication number: 20180350617
    Abstract: Exemplary cleaning or etching methods may include flowing a fluorine-containing precursor into a remote plasma region of a semiconductor processing chamber. Methods may include forming a plasma within the remote plasma region to generate plasma effluents of the fluorine-containing precursor. The methods may also include flowing the plasma effluents into a processing region of the semiconductor processing chamber. A substrate may be positioned within the processing region, and the substrate may include a region of exposed oxide and a region of exposed metal. Methods may also include providing a hydrogen-containing precursor to the processing region. The methods may further include removing at least a portion of the exposed oxide.
    Type: Application
    Filed: May 31, 2017
    Publication date: December 6, 2018
    Applicant: Applied Materials, Inc.
    Inventors: Zhijun Chen, Lin Xu, Anchuan Wang, Nitin Ingle