Patents by Inventor Anders Björling

Anders Björling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160361562
    Abstract: In response to local or systemic inflammation in a patient, photobiomodulation therapy is applied to a cardiac location to reduce the risk and/or occurrence of cardiac arrhythmia. Once inflammation is identified, photobiomodulation therapy can be applied in any suitable fashion (e.g., via a catheter- or transesophageal probe-mounted photoemitter, via an externally-applied photoemitter, or via photoemitter incorporated into an implantable medical device). Photobiomodulation therapy can also be employed to good advantage in conjunction with non-photobiomodulation therapy (e.g., traditional cardiac rhythm management therapies).
    Type: Application
    Filed: August 11, 2016
    Publication date: December 15, 2016
    Inventors: Karin Järverud, Cecilia Emanuelsson, Anders Björling, Kjell Noren
  • Patent number: 9180307
    Abstract: In response to local or systemic inflammation in a patient, photobiomodulation therapy is applied to a cardiac location to reduce the risk and/or occurrence of cardiac arrhythmia. Once inflammation is identified, photobiomodulation therapy can be applied in any suitable fashion (e.g., via a catheter- or transesophageal probe-mounted photoemitter, via an externally-applied photoemitter, or via photoemitter incorporated into an implantable medical device). Photobiomodulation therapy can also be employed to good advantage in conjunction with non-photobiomodulation therapy (e.g., traditional cardiac rhythm management therapies).
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 10, 2015
    Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.
    Inventors: Karin Järverud, Cecilia Emanuelsson, Anders Björling, Kjell Noren
  • Patent number: 8761882
    Abstract: In an implantable heart stimulating device and a method of the operation thereof, device has a control circuit that detects an evoked responses to delivered pacing pulses and to carry out an automatic capture routine. The control circuit is arranged to automatically temporarily disable the automatic capture routine on the basis of at least one of the following criteria: a1) if more than a predetermined number of threshold searches have been performed during a certain time, and b1) if a variable time delay with which the device operates is changed such that a pacing pulse may be delivered by the device during the evoked response time window.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: June 24, 2014
    Assignee: St. Jude Medical AB
    Inventor: Anders Björling
  • Patent number: 8755874
    Abstract: In an implantable medical device such as an implantable cardiac defibrillator, and a method for classifying arrhythmia events, IEGM signals are analyzed to detect an arrhythmia event and a respiratory pattern of the patient is sensed. At least one respiratory parameter reflecting characteristics of the respiratory pattern of the patient is determined based on the sensed respiratory pattern and a respiratory measure corresponding to a change of a rate of change of the at least one respiratory parameter is calculated. The detected arrhythmia event is classified based on the respiratory measure and the IEGM signals, wherein arrhythmia events that satisfy at least a first criterion is classified as an arrhythmia event requiring therapy.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: June 17, 2014
    Assignee: St. Jude Medical AB
    Inventors: Anders Björling, Rupinder Bharmi, Michael Broomé, Karin Järverud
  • Patent number: 8738120
    Abstract: An implantable medical device (100) is configured for generating a cardiogenic impedance signal representative of the cardiogenic impedance of at least a portion of a heart (10) of a subject (20) during at least a portion of cardiac cycle. A moment processor (132) calculates a moment parameter value based on the cardiogenic impedance signal. The moment parameter is representative of a weighted sum of impedance amplitudes within a time window centered at defined time instance within the cardiac cycle. The weights of the impedance amplitudes are further dependent on the length in time between the defined time instance and the point of time of the associated impedance amplitude. The moment parameter is of high diagnostic value and is employed by an arrhythmia classifier (132) in order to classify a detected arrhythmia of the heart (10), such as discriminate between hemodynamically stable or unstable arrhythmias and/or supraventricular or ventricular tachycardia.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: May 27, 2014
    Assignee: St. Jude Medical AB
    Inventors: Anders Björling, Malin Hollmark, Tomas Svensson, Stefan Hjelm, Kjell Norén, Karin Järverud
  • Patent number: 8483817
    Abstract: In a method and an implantable medical device for assessing a degree of pulmonary edema of a patient, at least two specific body patients of the patent are detected and at least one impedance sensing session is initiated to sense trans-thoracic impedance signals from the patient when the patient is in one of the at least two specific positions. Impedance values are obtained from the impedance signals, and a relation between respective impedance values at the at least two positions is determined. This relation is then used as a metric of pulmonary edema to assess the degree of pulmonary edema, and is provided as an output.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: July 9, 2013
    Assignee: St. Jude Medical, AB
    Inventor: Anders Björling
  • Patent number: 8433385
    Abstract: An analyte measuring system has an implantable medical device having a signal source arranged for generating a current signal and electrodes for applying the current signal to a surrounding tissue in a subject body. The device measures a resulting voltage signal with the electrodes and calculates an impedance signal therefrom. The system comprises a signal processor arranged for generating an estimate of a concentration of an analyte in the tissue based on a spectrum analysis of the determined impedance signal.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: April 30, 2013
    Assignee: St. Jude Medical AB
    Inventors: Hans Abrahamson, Anders Björling, Tomas Snitting, Nils Holmström
  • Publication number: 20130060118
    Abstract: An implantable medical device (100) is configured for generating a cardiogenic impedance signal representative of the cardiogenic impedance of at least a portion of a heart (10) of a subject (20) during at least a portion of cardiac cycle. A moment processor (132) calculates a moment parameter value based on the cardiogenic impedance signal. The moment parameter is representative of a weighted sum of impedance amplitudes within a time window centered at defined time instance within the cardiac cycle. The weights of the impedance amplitudes are further dependent on the length in time between the defined time instance and the point of time of the associated impedance amplitude. The moment parameter is of high diagnostic value and is employed by an arrhythmia classifier (132) in order to classify a detected arrhythmia of the heart (10), such as discriminate between hemodynamically stable or unstable arrhythmias and/or supraventricular or ventricular tachycardia.
    Type: Application
    Filed: May 12, 2010
    Publication date: March 7, 2013
    Applicant: ST. JUDE MEDICAL AB
    Inventors: Anders Björling, Malin Hollmark, Tomas Svensson, Stefan Hjelm, Kjell Norén, Karin Järverud
  • Publication number: 20120239121
    Abstract: In response to local or systemic inflammation in a patient, photobiomodulation therapy is applied to a cardiac location to reduce the risk and/or occurrence of cardiac arrhythmia. Once inflammation is identified, photobiomodulation therapy can be applied in any suitable fashion (e.g., via a catheter- or transesophageal probe-mounted photoemitter, via an externally-applied photoemitter, or via photoemitter incorporated into an implantable medical device). Photobiomodulation therapy can also be employed to good advantage in conjunction with non-photobiomodulation therapy (e.g., traditional cardiac rhythm management therapies).
    Type: Application
    Filed: March 15, 2011
    Publication date: September 20, 2012
    Inventors: Karin JÄRVERUD, Cecilia Emanuelsson, Anders Björling, Kjell Noren
  • Patent number: 8233983
    Abstract: In an implantable heart stimulator and a method for operation thereof, stimulation pulses are delivered to a heart. The amplitude of the delivered stimulation pulses can be selectively set. For setting the amplitude, threshold searches are performed at selected time intervals. Each threshold search determines a threshold value required for achieving capture. The amplitudes of the respective stimulation pulses are set to a value that exceeds the determined threshold value by a safety margin. The safety margin is selected as a function of the selected time intervals.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: July 31, 2012
    Assignee: St. Jude Medical AB
    Inventors: Anders Björling, Nils Holmström
  • Publication number: 20120108987
    Abstract: Implantable systems, and methods for use therewith, for monitoring arterial blood pressure on a chronic basis are provided herein. A first signal indicative of electrical activity of a patient's heart, and a second signal indicative of mechanical activity of the patient's heart, are obtained using implanted electrodes and an implanted sensor. By measuring the times between various features of the first signal relative to features of the second signal, values indicative of systolic pressure and diastolic pressure can be determined. In specific embodiments, such features are used to determine a peak pulse arrival time (PPAT), which is used to determine the value indicative of systolic pressure. Additionally, a peak-to-peak amplitude at the maximum peak of the second signal, and the value indicative of systolic pressure, can be used to determine the value indicative of diastolic pressure.
    Type: Application
    Filed: January 3, 2012
    Publication date: May 3, 2012
    Inventors: Timothy A. Fayram, Eric S. Fain, Paul A. Levine, Anders Björling
  • Patent number: 8147416
    Abstract: Implantable systems, and methods for use therewith, for monitoring arterial blood pressure on a chronic basis are provided herein. A first signal indicative of electrical activity of a patient's heart, and a second signal indicative of mechanical activity of the patient's heart, are obtained using implanted electrodes and an implanted sensor. By measuring the times between various features of the first signal relative to features of the second signal, values indicative of systolic pressure and diastolic pressure can be determined. In specific embodiments, such features are used to determine a peak pulse arrival time (PPAT), which is used to determine the value indicative of systolic pressure. Additionally, a peak-to-peak amplitude at the maximum peak of the second signal, and the value indicative of systolic pressure, can be used to determine the value indicative of diastolic pressure.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: April 3, 2012
    Assignee: Pacesetter, Inc.
    Inventors: Timothy A. Fayram, Eric S. Fain, Paul A. Levine, Anders Björling
  • Patent number: 8131366
    Abstract: In a biventricular heart stimulator and a method for controlling such a biventricular heart stimulator, successive stimulation pulses are delivered to the ventricles of a heart such that stimulation pulses in a single heartbeat cycle are respectively first delivered to the first ventricle and then to the second ventricle. Capture or loss of capture in response to stimulation pulses delivered to one ventricle is detected. As a result of a detected loss of capture, preventative measures are taken for preventing loss of capture in the other ventricle.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: March 6, 2012
    Assignee: St. Jude Medical AB
    Inventors: Anders Björling, Nils Holmström
  • Patent number: 8103344
    Abstract: In a device and method in a dual chamber pacing system operating in an atrial synchronized mode, the cardiac stimulator is connectable to a lead arrangement arranged for sensing atrial electrical and mechanical activity. Upon detection of an atrial arrhythmia based on either of sensed atrial mechanical activity, atrial electrical activity, or a combination thereof, a mode switch from an atrial synchronized ventricle stimulating mode to a non-atrial synchronized mode is triggered.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: January 24, 2012
    Assignee: St. Jude Medical AB
    Inventor: Anders Björling
  • Publication number: 20110313302
    Abstract: An implantable medical device is connected to a cardiomechanic sensor implanted in or in connection with a cardiac ventricle. The sensor generates a deformation signal representative of the myocardial deformation. The implantable medical device processes the deformation signal by calculating the derivative thereof to generate a deformation rate signal representative of the rate of myocardial deformation. The deformation rate signal is filtered and respective maximum deformation rate values are identified for multiple cardiac cycles in the filtered deformation rate signal. A value representative of the systemic blood pressure is calculated based on a combination of the respective maximum deformation rate values.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 22, 2011
    Inventors: Anders Björling, Kjell Norén, Karin Järverud
  • Patent number: 8000790
    Abstract: An implantable cardiac stimulation device has an atrial detector that detects atrial events of a patient's heart, and a memory in which sequences of IEGM signals are stored, having a predetermined length, and an analyzing unit that analyzes the sequences to determine if the stored sequences contain atrial events having a lower amplitude than the current sensitivity setting of the atrial detector. A control unit is connected to the atrial detector to adjust the sensitivity setting thereof to a threshold that is determined based on the aforementioned analysis of the IEGM signals.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: August 16, 2011
    Assignee: St. Jude Medical AB
    Inventors: Anders Björling, Nils Holmström, Karin Järverud, Martin Obel
  • Patent number: 7979125
    Abstract: In an implantable biventricular heart stimulating device, and a biventricular heart stimulating method, wherein operation takes place normally with a time VV between a pacing pulse delivered, or inhibited, by a first ventricular pacing circuit and a pacing pulse delivered, or inhibited, by a second ventricular pacing circuit, and wherein a time VVcts is determined that is to be used instead of VV during a capture threshold search.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: July 12, 2011
    Assignee: St. Jude Medical AB
    Inventors: Anders Björling, Nils Holmström, Karin Järverud
  • Publication number: 20110166614
    Abstract: An analyte measuring system includes implantable medical device having a RF signal source arranged for generating a RF signal and a transmitting antenna for transmitting the RF signal into a surrounding tissue in a subject body. The system has a receiving RF antenna for receiving the RF signal from the tissue and a signal processor arranged for generating an estimate of a concentration of an analyte in the tissue based on a spectral analysis of the received RF signal.
    Type: Application
    Filed: December 21, 2007
    Publication date: July 7, 2011
    Inventors: Hans Abrahamson, Anders Björling, Tomas Snitting, Nils Holmström, Tom Eriksson
  • Publication number: 20110166472
    Abstract: In an implantable medical device, such as a pacemaker or a cardioverter/defibrillator, and a method for operating such an implantable medical device, heart conditions, such as heart failure, are detected and predicted at an early stage within a patient in whom the medical device is implanted, by monitoring a patient status, for example, HF status, and predicting a worsening of the HF status of the patient and determining a patient status index, wherein a first average and a second average is compared at predetermined sample points of time. A patient status is determined based on this patient status index, wherein a patient status index that has increased substantially monotonously during a first monitoring period is determined to be an indication of an exacerbation of patient status, and in particular, a worsening of heart failure.
    Type: Application
    Filed: August 29, 2008
    Publication date: July 7, 2011
    Inventors: Anders Björling, Dorin Panescu, Wenxia Zhao
  • Patent number: 7959576
    Abstract: An implantable medical apparatus for detecting diastolic heart failure, DHF, has a DHF determining device for determining at least one DHF parameter for detecting a DHF state of the heart of a patient. The DHF includes circuitry for determining, as the DHF parameter, the time duration of a predetermined phase of diastole. A pacemaker has such an apparatus and a control unit that optimizes pacing therapy and pacemaker settings depending on the determined time duration. A corresponding method of detecting diastolic heart failure, DHF, includes determining at least one DHF parameter for detecting a DHF state of the heart of a patient. As the DHF parameter, the time duration of a predetermined phase of diastole is determined.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: June 14, 2011
    Assignee: St. Jude Medical AB
    Inventors: Maria Torpo, Malin Öhlander, Anders Björling, Karin Ljungström