Patents by Inventor Anders Eckerbom

Anders Eckerbom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240306938
    Abstract: A nasal/oral cannula for collecting a flow of exhaled gases and its method of manufacture are disclosed. The cannula comprises an elongated tubular body having a first and a second end portion, a surface and an internal volume; a wall internally disposed within said tubular body, said wall defining a first subvolume of said internal volume in the lengthwise direction of the tubular body; and an inlet through said surface, for introducing exhaled gases into said first subvolume. The first end portion defines an exit port for exhaled gases from said subvolume, and said wall is arranged directly adjacent to said inlet.
    Type: Application
    Filed: May 28, 2024
    Publication date: September 19, 2024
    Inventors: Anders Eckerbom, Robert Zyzanski
  • Patent number: 12036014
    Abstract: A nasal/oral cannula for collecting a flow of exhaled gases and its method of manufacture are disclosed. The cannula comprises an elongated tubular body having a first and a second end portion, a surface and an internal volume; a wall internally disposed within said tubular body, said wall defining a first subvolume of said internal volume in the lengthwise direction of the tubular body; and an inlet through said surface, for introducing exhaled gases into said first subvolume. The first end portion defines an exit port for exhaled gases from said subvolume, and said wall is arranged directly adjacent to said inlet.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: July 16, 2024
    Assignee: Masimo Corporation
    Inventors: Anders Eckerbom, Robert Zyzanski
  • Publication number: 20230346257
    Abstract: A gas sampling line having a channel for conducting respiratory gases from a patient respiratory interlace to a gas monitor, the gas sampling line comprising, i.a., a gas sampling tube comprised of a polyether block amide material, the polyether segments of which comprise polyethyleneoxide. Use of a tube comprised of a polyether block amide material, the polyether segments of which comprise polyethyleneoxide, for sampling of respiratory gases; and a method for sampling of respiratory gases, the method comprising conducting respiratory gases through such a tube. A gas analysis system for analysing respiratory gases, comprising a gas sampling line as defined above and a gas monitor connectable to the gas sampling line.
    Type: Application
    Filed: December 28, 2022
    Publication date: November 2, 2023
    Inventors: Anders ECKERBOM, Robert ZYZANSKI
  • Patent number: 11564593
    Abstract: A gas sampling line having a channel for conducting respiratory gases from a patient respiratory interface to a gas monitor, the gas sampling line comprising, i.a., a gas sampling tube comprised of a polyether block amide material, the polyether segments of which comprise polyethyleneoxide. Use of a tube comprised of a polyether block amide material, the polyether segments of which comprise polyethyleneoxide, for sampling of respiratory gases; and a method for sampling of respiratory gases, the method comprising conducting respiratory gases through such a tube. A gas analysis system for analysing respiratory gases, comprising a gas sampling line as defined above and a gas monitor connectable to the gas sampling line.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: January 31, 2023
    Assignee: Masimo Corporation
    Inventors: Anders Eckerbom, Robert Zyzanski
  • Patent number: 10952641
    Abstract: A gas sampling line having a channel for conducting respiratory gases from a patient respiratory interface to a gas monitor, the gas sampling line comprising, i.a., a gas sampling tube comprised of a polyether block amide material, the polyether segments of which comprise polyethyleneoxide. Use of a tube comprised of a polyether block amide material, the polyether segments of which comprise polyethyleneoxide, for sampling of respiratory gases; and a method for sampling of respiratory gases, the method comprising conducting respiratory gases through such a tube. A gas analysis system for analysing respiratory gases, comprising a gas sampling line as defined above and a gas monitor connectable to the gas sampling line.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: March 23, 2021
    Assignee: Masimo Corporation
    Inventors: Anders Eckerbom, Robert Zyzanski
  • Publication number: 20200214594
    Abstract: A nasal/oral cannula for collecting a flow of exhaled gases and its method of manufacture are disclosed. The cannula comprises an elongated tubular body having a first and a second end portion, a surface and an internal volume; a wall internally disposed within said tubular body, said wall defining a first subvolume of said internal volume in the lengthwise direction of the tubular body; and an inlet through said surface, for introducing exhaled gases into said first subvolume. The first end portion defines an exit port for exhaled gases from said subvolume, and said wall is arranged directly adjacent to said inlet.
    Type: Application
    Filed: October 14, 2019
    Publication date: July 9, 2020
    Inventors: Anders Eckerbom, Robert Zyzanski
  • Publication number: 20200046257
    Abstract: A gas sampling line having a channel for conducting respiratory gases from a patient respiratory interface to a gas monitor, the gas sampling line comprising, i.a., a gas sampling tube comprised of a polyether block amide material, the polyether segments of which comprise polyethyleneoxide. Use of a tube comprised of a polyether block amide material, the polyether segments of which comprise polyethyleneoxide, for sampling of respiratory gases; and a method for sampling of respiratory gases, the method comprising conducting respiratory gases through such a tube. A gas analysis system for analysing respiratory gases, comprising a gas sampling line as defined above and a gas monitor connectable to the gas sampling line.
    Type: Application
    Filed: October 22, 2019
    Publication date: February 13, 2020
    Inventors: Anders ECKERBOM, Robert ZYZANSKI
  • Patent number: 10441196
    Abstract: A nasal/oral cannula for collecting a flow of exhaled gases and its method of manufacture are disclosed. The cannula comprises an elongated tubular body having a first and a second end portion, a surface and an internal volume; a wall internally disposed within said tubular body, said wall defining a first subvolume of said internal volume in the lengthwise direction of the tubular body; and an inlet through said surface, for introducing exhaled gases into said first subvolume. The first end portion defines an exit port for exhaled gases from said subvolume, and said wall is arranged directly adjacent to said inlet.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: October 15, 2019
    Assignee: Masimo Corporation
    Inventors: Anders Eckerbom, Robert Zyzanski
  • Publication number: 20180153442
    Abstract: A gas sampling line having a channel for conducting respiratory gases from a patient respiratory interface to a gas monitor, the gas sampling line comprising, i.a., a gas sampling tube comprised of a polyether block amide material, the polyether segments of which comprise polyethyleneoxide. Use of a tube comprised of a polyether block amide material, the polyether segments of which comprise polyethyleneoxide, for sampling of respiratory gases; and a method for sampling of respiratory gases, the method comprising conducting respiratory gases through such a tube. A gas analysis system for analysing respiratory gases, comprising a gas sampling line as defined above and a gas monitor connectable to the gas sampling line.
    Type: Application
    Filed: December 5, 2017
    Publication date: June 7, 2018
    Inventors: Anders ECKERBOM, Robert Zyzanski
  • Patent number: 9861298
    Abstract: A gas sampling line having a channel for conducting respiratory gases from a patient respiratory interface to a gas monitor, the gas sampling line comprising, i.a., a gas sampling tube comprised of a polyether block amide material, the polyether segments of which comprise polyethyleneoxide. Use of a tube comprised of a polyether block amide material, the polyether segments of which comprise polyethyleneoxide, for sampling of respiratory gases; and a method for sampling of respiratory gases, the method comprising conducting respiratory gases through such a tube. A gas analysis system for analyzing respiratory gases, comprising a gas sampling line as defined above and a gas monitor connectable to the gas sampling line.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: January 9, 2018
    Assignee: Masimo Corporation
    Inventors: Anders Eckerbom, Robert Zyzanski
  • Publication number: 20160213281
    Abstract: A nasal/oral cannula for collecting a flow of exhaled gases and its method of manufacture are disclosed. The cannula comprises an elongated tubular body having a first and a second end portion, a surface and an internal volume; a wall internally disposed within said tubular body, said wall defining a first subvolume of said internal volume in the lengthwise direction of the tubular body; and an inlet through said surface, for introducing exhaled gases into said first subvolume. The first end portion defines an exit port for exhaled gases from said subvolume, and said wall is arranged directly adjacent to said inlet.
    Type: Application
    Filed: January 22, 2016
    Publication date: July 28, 2016
    Inventors: Anders Eckerbom, Robert Zyzanski
  • Publication number: 20110237969
    Abstract: A gas sampling line having a channel for conducting respiratory gases from a patient respiratory interface to a gas monitor, the gas sampling line comprising, i.a., a gas sampling tube comprised of a polyether block amide material, the polyether segments of which comprise polyethyleneoxide. Use of a tube comprised of a polyether block amide material, the polyether segments of which comprise polyethyleneoxide, for sampling of respiratory gases; and a method for sampling of respiratory gases, the method comprising conducting respiratory gases through such a tube. A gas analysis system for analysing respiratory gases, comprising a gas sampling line as defined above and a gas monitor connectable to the gas sampling line.
    Type: Application
    Filed: September 11, 2009
    Publication date: September 29, 2011
    Inventors: Anders Eckerbom, Robert Zyzanski
  • Patent number: 7629039
    Abstract: A window for use in an adapter for an IR gas analyser for analysing breathing gases, where the gases flow through a through-penetrating passageway in the adapter, which includes windows disposed on opposite sides of the passageway so as to enable an IR beam to be sent through the windows and through the passageway containing said breathing gases. Each window is a one-piece structure comprised of plastic material and has a round basic shape that includes a surrounding edge and a central part which is sunken in relation to the surrounding edge and which forms the window through which the IR beams or rays shall be able to pass. A method of producing such a window, by injection moulding a thermoplastic material in a mould where injection of the plastic material is also disclosed.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: December 8, 2009
    Assignee: Phasein AB
    Inventors: Anders Eckerbom, Robert Zyzanski
  • Patent number: 7235054
    Abstract: A measuring head for the analysis of respiratory gases to and from a patient connected to a respirator, includes an aperture (7) which is intended to be placed over an adapter (2) through which respiratory gases flow. The measuring head (1) has a light transmitter (9) which includes an IR-emitter (12) on one side of the aperture (7) and a light receiver (10) which includes an IR-detector on the other side of the aperture (7). The measuring head (1) also includes a signal processing unit (20) necessary for the gas analysis.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: June 26, 2007
    Assignee: Phase-In AB
    Inventor: Anders Eckerbom
  • Publication number: 20060251903
    Abstract: A window for use in an adapter for an IR gas analyser for analysing breathing gases, where the gases flow through a through-penetrating passageway in the adapter, which includes windows disposed on opposite sides of the passageway so as to enable an IR beam to be sent through the windows and through the passageway containing said breathing gases. Each window is a one-piece structure comprised of plastic material and has a round basic shape that includes a surrounding edge and a central part which is sunken in relation to the surrounding edge and which forms the window through which the IR beams or rays shall be able to pass. A method of producing such a window, by injection moulding a thermoplastic material in a mould where injection of the plastic material is also disclosed.
    Type: Application
    Filed: April 22, 2004
    Publication date: November 9, 2006
    Applicant: Phasein AB
    Inventors: Anders Eckerbom, Robert Zyzanski
  • Patent number: 6896713
    Abstract: A liquid separator for separating liquid from gases, comprises a water trap (1) that includes a container (3), a connector (5) for incoming gas flow, a separation chamber (4) that includes a filter and at least one connection passageway for leading separated gas to an analysis instrument. The water trap (1) can be removably fitted in a holder unit (2) connected to the analysis instrument, and the holder unit (2) includes connection devices (15, 16) for receiving the connection passageway.
    Type: Grant
    Filed: January 20, 2000
    Date of Patent: May 24, 2005
    Assignee: Artema Medical AB
    Inventors: Anders Eckerbom, Per Lindestam
  • Publication number: 20040267151
    Abstract: A measuring head for the analysis of respiratory gases to and from a patient connected to a respirator, includes an aperture (7) which is intended to be placed over an adapter (2) through which respiratory gases flow. The measuring head (1) has a light transmitter (9) which includes an IR-emitter (12) on one side of the aperture (7) and a light receiver (10) which includes an IR-detector on the other side of the aperture (7). The measuring head (1) also includes a signal processing unit (20) necessary for the gas analysis.
    Type: Application
    Filed: April 30, 2004
    Publication date: December 30, 2004
    Inventor: Anders Eckerbom
  • Publication number: 20040236243
    Abstract: The invention relates to an arrangement for the quantitative analysis of respiratory gases to and from a patient connected to a respirator for breathing assistance, wherein the arrangement includes an adapter (1) that has connections (4) for a respirator or the like and connections (3) for a hose leading to teh patient, wherein the adapter includes between the respirator connection (4) and the hose connections (3) a passive respiratory gas humidifier (4), wherein a connection for a measuring head (2) for a gas analyser is provided between the passive humidifier (14) and the respirator connection (4), and wherein the measuring head connection includes two windows (7) through which rays of light from the measuring head (2) can pass.
    Type: Application
    Filed: February 24, 2004
    Publication date: November 25, 2004
    Inventor: Anders Eckerbom
  • Publication number: 20040215096
    Abstract: The present invention relates to an arrangement for the quantitative analysis of respiratory gases to and from a patient connected to a respirator for breathing assistance, wherein the arrangement includes an adapter (1) that has connectors (4) for connection to a respirator or the like, and connectors (3) for connection to a hose (13) leading to the patient. The adapter (1) in accordance with the invention, the arrangement includes a fuel cell (18) located between the respirator connector (4) and the connectors (3) for connecting the hoses leading to the patient; and in that the adapter (1) also includes a bacterial filter (15; 17) for protecting the fuel cell (18) from bacteria in the respiratory gases.
    Type: Application
    Filed: February 17, 2004
    Publication date: October 28, 2004
    Inventor: Anders Eckerbom
  • Publication number: 20040210152
    Abstract: An arrangement for the quantitative analysis respiratory gases to and from a patient connected to a respirator for breathing assistance, includes an adapter (1) having connectors (4) for connection to a respirator or the like, and connectors (3) for connection to a hose (13) leading to the patient. A connection for a measuring head (2) for a gas analyser is provided in the adapter (1) between the respirator connector (4) and the connectors (3) for connecting the hoses to the patient. The measuring head connection includes two windows (7) through which rays of light from the measuring head (2) can pass; and the adapter (1) also includes a connection (16) for a fuel cell (18) for measuring the oxygen gas content of the respiration gases.
    Type: Application
    Filed: February 17, 2004
    Publication date: October 21, 2004
    Inventor: Anders Eckerbom