Patents by Inventor Anders Ingvar Aberg
Anders Ingvar Aberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12078728Abstract: An image sensor array includes a substrate and a plurality of pixels. Each pixel includes a single photon avalanche detector (SPAD), a quench device coupled to a respective SPAD and configured to quench an avalanche current, and time measurement circuitry configured to measure a time-of-flight of a photon. The SPAD has a trench coupled to the substrate and having a lattice mismatch with the substrate, and a substantially defect-free region coupled to the trench and configured to generate the avalanche current when the photon is detected in the defect-free region, wherein the trench and the defect-free region form an electrode. An imaging system includes an infrared laser configured to provide a pulse of light, and the image sensor array configured to receive the pulse from the infrared laser.Type: GrantFiled: April 29, 2021Date of Patent: September 3, 2024Assignee: Semiking LLCInventors: Clifford Alan King, Anders Ingvar Aberg
-
Patent number: 11973093Abstract: A single photon avalanche (SPAD) device configured to detect visible to infrared light includes a substrate and a trench coupled to the substrate. The trench has a lattice mismatch with the substrate and has a height equal to or greater than its width. The device further includes a substantially defect-free semiconductor region that includes photosensitive material. The semiconductor region includes a well coupled to the trench and doped a first type. The well is configured to detect a photon and generate a current. The semiconductor region also includes a region formed in the well and doped a second type opposite to the first type. The well is configured to cause an avalanche multiplication of the current. The trench and the well form a first electrode and the region forms a second electrode.Type: GrantFiled: June 2, 2021Date of Patent: April 30, 2024Assignee: SEMIKING LLCInventors: Clifford Alan King, Anders Ingvar Aberg
-
Publication number: 20210343762Abstract: A single photon avalanche (SPAD) device configured to detect visible to infrared light includes a substrate and a trench coupled to the substrate. The trench has a lattice mismatch with the substrate and has a height equal to or greater than its width. The device further includes a substantially defect-free semiconductor region that includes photosensitive material. The semiconductor region includes a well coupled to the trench and doped a first type. The well is configured to detect a photon and generate a current. The semiconductor region also includes a region formed in the well and doped a second type opposite to the first type. The well is configured to cause an avalanche multiplication of the current. The trench and the well form a first electrode and the region forms a second electrode.Type: ApplicationFiled: June 2, 2021Publication date: November 4, 2021Inventors: Clifford Alan King, Anders Ingvar Aberg
-
Publication number: 20210341619Abstract: An image sensor array includes a substrate and a plurality of pixels. Each pixel includes a single photon avalanche detector (SPAD), a quench device coupled to a respective SPAD and configured to quench an avalanche current, and time measurement circuitry configured to measure a time-of-flight of a photon. The SPAD has a trench coupled to the substrate and having a lattice mismatch with the substrate, and a substantially defect-free region coupled to the trench and configured to generate the avalanche current when the photon is detected in the defect-free region, wherein the trench and the defect-free region form an electrode. An imaging system includes an infrared laser configured to provide a pulse of light, and the image sensor array configured to receive the pulse from the infrared laser.Type: ApplicationFiled: April 29, 2021Publication date: November 4, 2021Inventors: Clifford Alan King, Anders Ingvar Aberg
-
Patent number: 8686365Abstract: Optical imaging structures and methods are disclosed. One structure may be implemented as an imaging pixel having multiple photodetectors. The photodetectors may detect different wavelengths of incident radiation, and may be operated simultaneously or at separate times. An imager may include an imaging array of pixels of the type described. Methods of operating such structures are also described.Type: GrantFiled: July 27, 2009Date of Patent: April 1, 2014Assignee: Infrared Newco, Inc.Inventors: Conor S. Rafferty, Anders Ingvar Aberg, Tirunelveli Subramaniam Sriram, Bryan D. Ackland, Clifford A. King
-
Patent number: 8294100Abstract: Imagers, pixels, and methods of using the same are disclosed for imaging in various spectra, such as visible, near infrared (IR), and short wavelength IR (SWIR). The imager may have an imaging array having pixels of different types. The different types of pixels may detect different ranges of wavelengths in the IR, or the SWIR, spectra. The pixels may include a filter which blocks some wavelengths of radiation in the IR spectrum while passing other wavelengths. The filter may be formed of a semiconductor material, and therefore may be easily integrated with a CMOS pixel using conventional CMOS processing techniques.Type: GrantFiled: November 18, 2011Date of Patent: October 23, 2012Assignee: Infrared Newco, Inc.Inventors: Conor S. Rafferty, Anders Ingvar Aberg, Tirunelveli Subramaniam Sriram, Bryan D. Ackland, Clifford A. King
-
Publication number: 20120061567Abstract: Imagers, pixels, and methods of using the same are disclosed for imaging in various spectra, such as visible, near infrared (IR), and short wavelength IR (SWIR). The imager may have an imaging array having pixels of different types. The different types of pixels may detect different ranges of wavelengths in the IR, or the SWIR, spectra. The pixels may include a filter which blocks some wavelengths of radiation in the IR spectrum while passing other wavelengths. The filter may be formed of a semiconductor material, and therefore may be easily integrated with a CMOS pixel using conventional CMOS processing techniques.Type: ApplicationFiled: November 18, 2011Publication date: March 15, 2012Applicant: Infrared Newco, Inc.Inventors: Conor S. Rafferty, Anders Ingvar Aberg, Tirunelveli Subramaniam Sriram, Bryan D. Ackland, Clifford A. King
-
Patent number: 8084739Abstract: Imagers, pixels, and methods of using the same are disclosed for imaging in various spectra, such as visible, near infrared (IR), and short wavelength IR (SWIR). The imager may have an imaging array having pixels of different types. The different types of pixels may detect different ranges of wavelengths in the IR, or the SWIR, spectra. The pixels may include a filter which blocks some wavelengths of radiation in the IR spectrum while passing other wavelengths. The filter may be formed of a semiconductor material, and therefore may be easily integrated with a CMOS pixel using conventional CMOS processing techniques.Type: GrantFiled: July 16, 2009Date of Patent: December 27, 2011Assignee: Infrared Newco., Inc.Inventors: Conor S. Rafferty, Anders Ingvar Aberg, Tirunelveli Subramaniam Sriram, Bryan D. Ackland, Clifford A. King
-
Publication number: 20100019154Abstract: Optical imaging structures and methods are disclosed. One structure may be implemented as an imaging pixel having multiple photodetectors. The photodetectors may detect different wavelengths of incident radiation, and may be operated simultaneously or at separate times. An imager may include an imaging array of pixels of the type described. Methods of operating such structures are also described.Type: ApplicationFiled: July 27, 2009Publication date: January 28, 2010Applicant: Noble Peak Vision Corp.Inventors: Conor S. Rafferty, Anders Ingvar Aberg, Tirunelveli Subramaniam Sriram, Bryan D. Ackland, Clifford A. King
-
Publication number: 20100012841Abstract: Imagers, pixels, and methods of using the same are disclosed for imaging in various spectra, such as visible, near infrared (IR), and short wavelength IR (SWIR). The imager may have an imaging array having pixels of different types. The different types of pixels may detect different ranges of wavelengths in the IR, or the SWIR, spectra. The pixels may include a filter which blocks some wavelengths of radiation in the IR spectrum while passing other wavelengths. The filter may be formed of a semiconductor material, and therefore may be easily integrated with a CMOS pixel using conventional CMOS processing techniques.Type: ApplicationFiled: July 16, 2009Publication date: January 21, 2010Applicant: Noble Peak Vision Corp.Inventors: Conor S. Rafferty, Anders Ingvar Aberg, Tirunelveli Subramaniam Sriram, Bryan D. Ackland, Clifford A. King