Patents by Inventor Anders Lloyd

Anders Lloyd has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240103129
    Abstract: A TDM MIMO FMCW radar comprises an array of physical receivers with a first spacing in a first direction and a plurality of physical transmitters arranged with a second spacing in said first direction. A virtual array signal of a range-Doppler bin relating to a scene with a moving object is processed by a phase compensation method, which introduces a phase ambiguity between the subarrays. For each of the subarrays, a frequency spectrum is computed of those elements of the compensated virtual array signal which correspond to consecutive virtual antenna elements generated by physical receivers belonging to the same row. Next, an amplitude-peak frequency is identified jointly for the frequency spectra of the subarrays. Next, a residual phase shift between a pair of the subarrays is determined by comparing, at the amplitude-peak frequency, the respective phases of the frequency spectra.
    Type: Application
    Filed: August 8, 2023
    Publication date: March 28, 2024
    Applicant: Axis AB
    Inventors: Anders MANNESSON, Mattias Simonsson, Stefan Adalbjörnsson, Anders Lloyd, Bertil Roslund
  • Publication number: 20240103128
    Abstract: A TDM MIMO FMCW radar comprises an array of physical receivers with a first spacing in a first direction and a plurality of physical transmitters arranged with a second spacing in said first direction. A virtual array signal of a range-Doppler bin relating to a scene with a moving object is processed by a phase compensation method, which introduces a phase ambiguity between the subarrays. A positive or negative spatial phase change rate with respect to the first direction is computed based on elements of the compensated virtual array signal corresponding to one subarray at a time. From this, based on the spacings, a spatial phase change between a pair of the subarrays is predicted. Next, a residual phase shift between said pair of subarrays is determined by comparing an actual phase shift of the compensated virtual array signal and the predicted spatial phase shift.
    Type: Application
    Filed: July 25, 2023
    Publication date: March 28, 2024
    Applicant: Axis AB
    Inventors: Anders LLOYD, Anders MANNESSON, Bertil ROSLUND, Mattias SIMONSSON, Stefan ADALBJÖRNSSON
  • Patent number: 11567167
    Abstract: A method for interference reduction in a stationary radar unit of a frequency-modulated continuous-wave (FMCW) type is provided. A sequence of beat signals is received, and a reference beat signal is calculated as an average or a median of one or more of the beat signals in the sequence. By comparing a difference between a beat signal and the reference beat signal, or a derivative of the difference, to one or more thresholds, a segment which is subject to interference is identified. The segment of the beat signal is replaced by one or more of a corresponding segment of an adjacent beat signal in the sequence, and a corresponding segment of the reference beat signal.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: January 31, 2023
    Assignee: Axis AB
    Inventors: Johan Wennersten, Anders Lloyd
  • Publication number: 20200116849
    Abstract: A method for interference reduction in a stationary radar unit of a frequency-modulated continuous-wave (FMCW) type is provided. A sequence of beat signals is received, and a reference beat signal is calculated as an average or a median of one or more of the beat signals in the sequence. By comparing a difference between a beat signal and the reference beat signal, or a derivative of the difference, to one or more thresholds, a segment which is subject to interference is identified. The segment of the beat signal is replaced by one or more of a corresponding segment of an adjacent beat signal in the sequence, and a corresponding segment of the reference beat signal.
    Type: Application
    Filed: October 8, 2019
    Publication date: April 16, 2020
    Applicant: Axis AB
    Inventors: Johan Wennersten, Anders Lloyd
  • Patent number: 9830528
    Abstract: A method may include determining a value indicative of an average intensity of blocks in an image. The blocks include a primary and outer blocks. Each of the outer blocks may have three, five, or more than five pixels. The image may describe an external pixel lying between the primary and at least one of the outer blocks. The external pixel may not contribute to the value indicative of the average intensity of any of the blocks. The image may also describe a common internal pixel lying within two of the blocks. The common pixel may contribute to the value indicative of the average intensity of the two of the blocks. The method may include comparing the value indicative of the average intensity of the primary block to the values of the outer blocks, and quantifying a feature represented by the image by generating a characteristic number.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: November 28, 2017
    Assignee: Axis AB
    Inventors: Jiandan Chen, Anders Lloyd, Niclas Danielsson
  • Publication number: 20170169306
    Abstract: A method may include determining a value indicative of an average intensity of blocks in an image. The blocks include a primary and outer blocks. Each of the outer blocks may have three, five, or more than five pixels. The image may describe an external pixel lying between the primary and at least one of the outer blocks. The external pixel may not contribute to the value indicative of the average intensity of any of the blocks. The image may also describe a common internal pixel lying within two of the blocks. The common pixel may contribute to the value indicative of the average intensity of the two of the blocks. The method may include comparing the value indicative of the average intensity of the primary block to the values of the outer blocks, and quantifying a feature represented by the image by generating a characteristic number.
    Type: Application
    Filed: December 9, 2015
    Publication date: June 15, 2017
    Inventors: Jiandan Chen, Anders Lloyd, Niclas Danielsson