Patents by Inventor Anders Snis

Anders Snis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11925983
    Abstract: Calibration systems, additive manufacturing systems employing the same, and methods of calibrating include a plurality of electron beam guns. One calibration system includes an imaging device positioned to capture one or more images of an impingement of electron beams emitted from the plurality of electron beam guns on a surface within a build chamber of the electron beam additive manufacturing system and an analysis component communicatively coupled to the imaging device. The analysis component is programmed to receive image data corresponding to the one or more images, determine one or more calibration parameters from the image data, and transmit one or more instructions to the plurality of electron beam guns in accordance with the one or more calibration parameters.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: March 12, 2024
    Assignee: Arcam AB
    Inventor: Anders Snis
  • Publication number: 20220402036
    Abstract: Calibration systems, additive manufacturing systems employing the same, and methods of calibrating include a plurality of electron beam guns. One calibration system includes an imaging device positioned to capture one or more images of an impingement of electron beams emitted from the plurality of electron beam guns on a surface within a build chamber of the electron beam additive manufacturing system and an analysis component communicatively coupled to the imaging device. The analysis component is programmed to receive image data corresponding to the one or more images, determine one or more calibration parameters from the image data, and transmit one or more instructions to the plurality of electron beam guns in accordance with the one or more calibration parameters.
    Type: Application
    Filed: June 17, 2021
    Publication date: December 22, 2022
    Applicant: ARCAM AB
    Inventor: Anders Snis
  • Publication number: 20220402035
    Abstract: Devices, systems and methods for calibrating and operating an additive manufacturing system are disclosed. A calibration system for an electron beam additive manufacturing system having a plurality of electron beam guns includes a calibration probe positioned in a build chamber of the electron beam additive manufacturing system, a sensing device positioned to measure and acquire a response generated as a result of impingement of electron beams emitted from the plurality of electron beam guns on the calibration probe, the sensing device generating a response signal as a result of the measured and acquired response, and an analysis component communicatively coupled to the sensing device and programmed to analyze and evaluate the response signal.
    Type: Application
    Filed: June 17, 2021
    Publication date: December 22, 2022
    Applicant: ARCAM AB
    Inventor: Anders Snis
  • Publication number: 20220176458
    Abstract: A method for producing three-dimensional objects layer by layer using a powdery material which can be solidified by irradiating it with at least two electron beams, said method comprises a pre-heating step, wherein the pre-heating step comprises the sub-step of scanning a pre-heating powder layer area (100) by scanning a first electron beam in a first region (I) and by scanning a second electron beam in a second region (II) distributed over the pre-heating powder layer area (100), wherein consecutively scanned paths are separated by, at least, a security distance (?Y), said sub-step further comprising the step of synchronising the preheating of said first and second electron beams when simultaneously preheating said powder material within said first and second regions respectively, so that said first and second electron beams are always separated to each other with at least a minimum security distance (?X).
    Type: Application
    Filed: February 28, 2022
    Publication date: June 9, 2022
    Applicant: Arcam AB
    Inventor: Anders Snis
  • Patent number: 11292062
    Abstract: A method for producing three-dimensional objects layer by layer using a powdery material which can be solidified by irradiating it with at least two electron beams, said method comprises a pre-heating step, wherein the pre-heating step comprises the sub-step of scanning a pre-heating powder layer area (100) by scanning a first electron beam in a first region (I) and by scanning a second electron beam in a second region (II) distributed over the pre-heating powder layer area (100), wherein consecutively scanned paths are separated by, at least, a security distance (?Y), said sub-step further comprising the step of synchronising the preheating of said first and second electron beams when simultaneously preheating said powder material within said first and second regions respectively, so that said first and second electron beams are always separated to each other with at least a minimum security distance (?X).
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: April 5, 2022
    Assignee: Arcam AB
    Inventor: Anders Snis
  • Publication number: 20220042797
    Abstract: Disclosed herein are methods for estimating a powder layer thickness in an additive manufacturing machine when forming a three-dimensional article layer by layer. The method comprises applying a first powder layer and selectively melting the first powder layer and thereafter measuring the temperature of the first powder layer at a plurality of times. The method further comprises providing a mathematical function giving a reference temperature as a function of time based on the measured temperatures of the first powder layer, applying a second powder layer on top of the first powder layer and measuring the temperature of the second powder layer at a predetermined time, and estimating the powder layer thickness of the second powder layer based on the measured temperature of the second powder layer and the reference temperature calculated by means of the mathematical function for the predetermined time point.
    Type: Application
    Filed: March 4, 2019
    Publication date: February 10, 2022
    Applicant: Arcam AB
    Inventor: Anders SNIS
  • Publication number: 20180345374
    Abstract: A method for producing three-dimensional objects layer by layer using a powdery material which can be solidified by irradiating it with at least two electron beams, said method comprises a pre-heating step, wherein the pre-heating step comprises the sub-step of scanning a pre-heating powder layer area (100) by scanning a first electron beam in a first region (I) and by scanning a second electron beam in a second region (II) distributed over the pre-heating powder layer area (100), wherein consecutively scanned paths are separated by, at least, a security distance (?Y), said sub-step further comprising the step of synchronising the preheating of said first and second electron beams when simultaneously preheating said powder material within said first and second regions respectively, so that said first and second electron beams are always separated to each other with at least a minimum security distance (?X).
    Type: Application
    Filed: April 30, 2018
    Publication date: December 6, 2018
    Inventor: Anders Snis
  • Patent number: 9915583
    Abstract: A method for verifying a position of an energy beam spot, said method comprising the steps of: providing a calibrated energy beam having a first focus in a at least two positions at a work table, detecting said at least two positions of said energy beam spot on said work table created with said energy beam having said first focus, providing said calibrated energy beam having a second focus in said at least two positions at a work table, detecting said at least two positions of said energy beam spot on said work table created with said energy beam having said second focus, comparing said at least two positions created with said first and second focus, wherein said position of the energy beam is verified if said positions created with said first focus are deviating less than a predetermined distance from said positions created with said second focus.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: March 13, 2018
    Assignee: Arcam AB
    Inventor: Anders Snis
  • Patent number: 9897513
    Abstract: A method for verifying a size of an energy beam spot, said method comprising the steps of providing a first beam spot having a predetermined size and power at a first position on a work piece, varying a focus and/or astigmatism lens setting for said first beam spot until max intensity for the beam spot is detected, comparing the detected settings of said focus lens and/or astigmatism lens for said maximum intensity of the beam spot with stored settings of said focus lens and/or astigmatism lens for the beam spot with said predetermined size and power, repeating step a-c for different predetermined beam powers, repeating step a-d for different positions on said work piece, wherein said beam spot size is verified if each detected settings of said focus lens and/or astigmatism lens are deviating less than a predetermined value from corresponding stored settings of said focus lens and/or astigmatism lens.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: February 20, 2018
    Assignee: ARCAM AB
    Inventor: Anders Snis
  • Patent number: 9782933
    Abstract: The invention concerns an apparatus (1) for producing three-dimensional objects (6) layer by layer using a powdery material which can be solidified by irradiating it with a beam (4) of charged particles, said apparatus (1) comprising means for successive application of powder layers to a work table, and a radiation gun (3) for delivering said beam (4) of charged particles, wherein the inventive apparatus (1) comprises a powder-lifting detection device (10, 10a, 10b, 10c, 10d, 10e) capable of generating a signal (S) upon detection of lifting of powdery material from the working area (5).
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: October 10, 2017
    Assignee: Arcam AB
    Inventors: Daniel Jonasson, Morgan Larsson, Ulf Ackelid, Anders Snis, Tomas Lock
  • Publication number: 20170227418
    Abstract: A method for verifying a position of an energy beam spot, said method comprising the steps of: providing a calibrated energy beam having a first focus in a at least two positions at a work table, detecting said at least two positions of said energy beam spot on said work table created with said energy beam having said first focus, providing said calibrated energy beam having a second focus in said at least two positions at a work table, detecting said at least two positions of said energy beam spot on said work table created with said energy beam having said second focus, comparing said at least two positions created with said first and second focus, wherein said position of the energy beam is verified if said positions created with said first focus are deviating less than a predetermined distance from said positions created with said second focus.
    Type: Application
    Filed: April 24, 2017
    Publication date: August 10, 2017
    Inventor: Anders Snis
  • Publication number: 20170227417
    Abstract: A method for verifying a size of an energy beam spot, said method comprising the steps of providing a first beam spot having a predetermined size and power at a first position on a work piece, varying a focus and/or astigmatism lens setting for said first beam spot until max intensity for the beam spot is detected, comparing the detected settings of said focus lens and/or astigmatism lens for said maximum intensity of the beam spot with stored settings of said focus lens and/or astigmatism lens for the beam spot with said predetermined size and power, repeating step a-c for different predetermined beam powers, repeating step a-d for different positions on said work piece, wherein said beam spot size is verified if each detected settings of said focus lens and/or astigmatism lens are deviating less than a predetermined value from corresponding stored settings of said focus lens and/or astigmatism lens.
    Type: Application
    Filed: April 24, 2017
    Publication date: August 10, 2017
    Inventor: Anders Snis
  • Patent number: 9676031
    Abstract: An apparatus for forming at least one three-dimensional article by fusing parts of a powder bed layer-wise. The apparatus comprising a powder distributor and an energy beam for fusing the powder layer. Said powder distributor comprises a first part being an elongated rod provided movable at a predetermined distance above the powder bed and with its central axis in parallel with a top surface of said work table and second part being a metal foil having at least a first and a second opposite edge portions. Said metal foil is provided between said elongated rod and said work table, said first and second opposite edge portions are attached to said elongated rod so that a distance between said first and second edge portions is smaller than the distance between said first and second edge portions of said metal foil when said metal foil is in a flat position.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: June 13, 2017
    Assignee: Arcam AB
    Inventors: Ulric Ljungblad, Lars Loewgren, Anders Snis, Mattias Fager
  • Patent number: 9664505
    Abstract: A method for verifying a position of an energy beam spot, said method comprising the steps of: providing a calibrated energy beam having a first focus in a at least two positions at a work table, detecting said at least two positions of said energy beam spot on said work table created with said energy beam having said first focus, providing said calibrated energy beam having a second focus in said at least two positions at a work table, detecting said at least two positions of said energy beam spot on said work table created with said energy beam having said second focus, comparing said at least two positions created with said first and second focus, wherein said position of the energy beam is verified if said positions created with said first focus are deviating less than a predetermined distance from said positions created with said second focus.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: May 30, 2017
    Assignee: Arcam AB
    Inventor: Anders Snis
  • Patent number: 9664504
    Abstract: A method for verifying a size of an energy beam spot, said method comprising the steps of providing a first beam spot having a predetermined size and power at a first position on a work piece, varying a focus and/or astigmatism lens setting for said first beam spot until max intensity for the beam spot is detected, comparing the detected settings of said focus lens and/or astigmatism lens for said maximum intensity of the beam spot with stored settings of said focus lens and/or astigmatism lens for the beam spot with said predetermined size and power, repeating step a-c for different predetermined beam powers, repeating step a-d for different positions on said work piece, wherein said beam spot size is verified if each detected settings of said focus lens and/or astigmatism lens are deviating less than a predetermined value from corresponding stored settings of said focus lens and/or astigmatism lens.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: May 30, 2017
    Assignee: Arcam AB
    Inventor: Anders Snis
  • Patent number: 9505057
    Abstract: The present invention relates to a method for forming a three-dimensional article through successive fusion of parts of at least one layer of a powder bed provided on a work table. Said method comprising the steps of: providing at least a first and second powder tank, providing a first type of powder in said first powder tank having a first particle size distribution, providing a second type of powder in said second powder tank having a second particle size distribution, providing a first sub-layer of said first type of powder on said work table, providing a second sub-layer of said second type of powder on top of said first layer of said first type of powder, fusing said first and second sub-layers simultaneously with a high energy beam from a high energy beam source for forming a first cross section of said three-dimensional article.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: November 29, 2016
    Assignee: Arcam AB
    Inventors: Johan Nordkvist, Ulf Ackelid, Anders Snis
  • Patent number: 9415443
    Abstract: A method for forming a three-dimensional article through successive fusion of parts of a powder bed, which parts corresponds to successive cross sections of the three-dimensional article, said method comprising the steps of: providing a model of said three dimensional article, providing a first powder layer on a work table, directing a first energy beam from a first energy beam source over said work table causing said first powder layer to fuse in first selected locations according to said model to form a first cross section of said three-dimensional article, directing a second energy beam from a second energy beam source over said work table causing said first powder layer to fuse in second selected locations according to said model to form the first cross section of said three-dimensional article, wherein said first and second locations of said first powder layer are at least partially overlapping each other.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: August 16, 2016
    Assignee: Arcam AB
    Inventors: Ulric Ljungblad, Anders Snis
  • Publication number: 20160202043
    Abstract: A method for verifying a position of an energy beam spot, said method comprising the steps of: providing a calibrated energy beam having a first focus in a at least two positions at a work table, detecting said at least two positions of said energy beam spot on said work table created with said energy beam having said first focus, providing said calibrated energy beam having a second focus in said at least two positions at a work table, detecting said at least two positions of said energy beam spot on said work table created with said energy beam having said second focus, comparing said at least two positions created with said first and second focus, wherein said position of the energy beam is verified if said positions created with said first focus are deviating less than a predetermined distance from said positions created with said second focus.
    Type: Application
    Filed: March 22, 2016
    Publication date: July 14, 2016
    Inventor: Anders Snis
  • Publication number: 20160202042
    Abstract: A method for verifying a size of an energy beam spot, said method comprising the steps of providing a first beam spot having a predetermined size and power at a first position on a work piece, varying a focus and/or astigmatism lens setting for said first beam spot until max intensity for the beam spot is detected, comparing the detected settings of said focus lens and/or astigmatism lens for said maximum intensity of the beam spot with stored settings of said focus lens and/or astigmatism lens for the beam spot with said predetermined size and power, repeating step a-c for different predetermined beam powers, repeating step a-d for different positions on said work piece, wherein said beam spot size is verified if each detected settings of said focus lens and/or astigmatism lens are deviating less than a predetermined value from corresponding stored settings of said focus lens and/or astigmatism lens.
    Type: Application
    Filed: March 22, 2016
    Publication date: July 14, 2016
    Inventor: Anders Snis
  • Patent number: 9347770
    Abstract: A method for verifying a size of an energy beam spot, said method comprising the steps of providing a first beam spot having a predetermined size and power at a first position on a work piece, varying a focus and/or astigmatism lens setting for said first beam spot until max intensity for the beam spot is detected, comparing the detected settings of said focus lens and/or astigmatism lens for said maximum intensity of the beam spot with stored settings of said focus lens and/or astigmatism lens for the beam spot with said predetermined size and power, repeating step a-c for different predetermined beam powers, repeating step a-d for different positions on said work piece, wherein said beam spot size is verified if each detected settings of said focus lens and/or astigmatism lens are deviating less than a predetermined value from corresponding stored settings of said focus lens and/or astigmatism lens.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: May 24, 2016
    Assignee: Arcam AB
    Inventor: Anders Snis