Patents by Inventor André P. Labonté

André P. Labonté has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8580628
    Abstract: An integrated circuit having a mis-alignment tolerant electrical contact is formed by providing a semiconductor containing substrate over which is a first FET gate laterally bounded by a first dielectric region, replacing an upper portion of the first FET gate with a second dielectric region, applying a mask having an opening extending partly over an adjacent source or drain contact region of the substrate and over a part of the second dielectric region above the first FET gate, forming an opening through the first dielectric region extending to the contact region and the part of the second dielectric region, and filling the opening with a conductor making electrical connection with the contact region but electrically insulated from the first FET gate by the second dielectric region. A further FET gate may also be provided having an electrical contact thereto formed separately from the source-drain contact.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: November 12, 2013
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: André P. Labonté, Richard S. Wise, Ying Li, Brett H. Engel
  • Patent number: 8507375
    Abstract: An alignment tolerant electrical contact is formed by providing a substrate on which is a first electrically conductive region (e.g., a MOSFET gate) having an upper surface, the first electrically conductive region being laterally bounded by a first dielectric region, applying a mask having an opening extending partly over a contact region (e.g., for the MOSFET source or drain) on the substrate and over a part of the upper surface, forming a passage through the first dielectric region extending to the contact region and the part of the upper surface, thereby exposing the contact region and the part of the upper surface, converting the part of the upper surface to a second dielectric region and filling the opening with a conductor making electrical contact with the contact region but electrically insulated from the electrically conductive region by the second dielectric region.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: August 13, 2013
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: André P. Labonté, Richard S. Wise
  • Publication number: 20130200471
    Abstract: An alignment tolerant electrical contact is formed by providing a substrate on which is a first electrically conductive region (e.g., a MOSFET gate) having an upper surface, the first electrically conductive region being laterally bounded by a first dielectric region, applying a mask having an opening extending partly over a contact region (e.g., for the MOSFET source or drain) on the substrate and over a part of the upper surface, forming a passage through the first dielectric region extending to the contact region and the part of the upper surface, thereby exposing the contact region and the part of the upper surface, converting the part of the upper surface to a second dielectric region and filling the opening with a conductor making electrical contact with the contact region but electrically insulated from the electrically conductive region by the second dielectric region.
    Type: Application
    Filed: February 2, 2012
    Publication date: August 8, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: André P. Labonté, Richard S. Wise
  • Publication number: 20130200441
    Abstract: An integrated circuit having a mis-alignment tolerant electrical contact is formed by providing a semiconductor containing substrate over which is a first FET gate laterally bounded by a first dielectric region, replacing an upper portion of the first FET gate with a second dielectric region, applying a mask having an opening extending partly over an adjacent source or drain contact region of the substrate and over a part of the second dielectric region above the first FET gate, forming an opening through the first dielectric region extending to the contact region and the part of the second dielectric region, and filling the opening with a conductor making electrical connection with the contact region but electrically insulated from the first FET gate by the second dielectric region. A further FET gate may also be provided having an electrical contact thereto formed separately from the source-drain contact.
    Type: Application
    Filed: February 2, 2012
    Publication date: August 8, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: André P. Labonté, Richard S. Wise, Ying Li, Brett H. Engel
  • Patent number: 8502296
    Abstract: A method includes forming at least one control gate over a semiconductor substrate. The method also includes depositing a layer of conductive material over the at least one control gate and the semiconductor substrate. The method further includes etching the layer of conductive material to form multiple spacers adjacent to the at least one control gate, where at least one of the spacers forms a floating gate in at least one memory cell. Two spacers could be formed adjacent to the at least one control gate, and one of the spacers could be etched so that a single memory cell includes the control gate and the remaining spacer. Also, two spacers could be formed adjacent to the at least one control gate, and the at least one control gate could be etched and separated to form multiple control gates associated with different memory cells.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: August 6, 2013
    Assignee: National Semiconductor Corporation
    Inventors: Andre P. Labonte, Jiankang Bu, Mark Rathmell
  • Publication number: 20130178055
    Abstract: Disclosed herein are methods of forming a replacement gate structure having a reentrant profile. In one example, the method includes forming a layer of material for a sacrificial gate electrode, wherein the layer of material includes at least one impurity that changes the etch rate of the layer of material as compared to an etch rate for the layer of material without the impurity, and wherein a concentration of the at least one impurity varies along a direction that corresponds to a thickness of the layer of material, and performing another etching process on the layer of material to define a sacrificial gate electrode. The method concludes with the steps of performing another etching process to remove the sacrificial gate electrode so as to at least partially define a gate opening in a layer of insulating material and forming a replacement gate structure in the gate opening.
    Type: Application
    Filed: January 9, 2012
    Publication date: July 11, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Andre P. LaBonte, Phillip L. Jones
  • Patent number: 8007675
    Abstract: A system and method is disclosed that terminates an etch process of a semiconductor crystal material at a precisely located depth. The semiconductor crystal is made of a first material and has a buried layer of a second material that is stoichiometrically different than the first material. The buried layer is located at a depth in the first material at which it is desired to terminate the etch process. During the etch process an optical emission spectrum of the first material is monitored. The intensity of the spectrum decreases when the etch process reaches the second material of the buried layer. The etch process is terminated when the decrease in spectrum intensity is detected.
    Type: Grant
    Filed: July 11, 2005
    Date of Patent: August 30, 2011
    Assignee: National Semiconductor Corporation
    Inventors: Andre P. Labonte, Craig Richard Printy
  • Patent number: 7968418
    Abstract: An isolation trench structure includes both a deep trench isolation (DTI) trench and a shallow trench isolation (STI) trench. The DTI trench can be formed by etching a deeper, narrower trench in a substrate and filling the deeper trench with one or more materials (such as an oxide). The STI trench can be formed by etching a shallower, wider trench in the substrate and filling the shallower trench with one or more materials (such as an oxide). The STI trench surrounds a portion of the DTI trench, such as by completely encircling an upper portion of the DTI trench. The DTI and STI trenches are filled during different operations, and the DTI and STI trenches can be filled with the same material(s) or with different material(s).
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: June 28, 2011
    Assignee: National Semiconductor Corporation
    Inventors: Andre P. Labonte, Todd P. Thibeault
  • Publication number: 20110042778
    Abstract: One or more trenches can be formed around a first portion of a semiconductor substrate, and an insulating layer can be formed under the first portion of the semiconductor substrate. The one or more trenches and the insulating layer electrically isolate the first portion of the substrate from a second portion of the substrate. The insulating layer can be formed by forming a buried layer in the substrate, such as a silicon germanium layer in a silicon substrate. One or more first trenches through the substrate to the buried layer can be formed, and open spaces can be formed in the buried layer (such as by using an etch selective to silicon germanium over silicon). The one or more first trenches and the open spaces can optionally be filled with insulative material(s). One or more second trenches can be formed and filled to isolate the first portion of the substrate.
    Type: Application
    Filed: November 1, 2010
    Publication date: February 24, 2011
    Applicant: NATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Craig Printy, Andre P. Labonte, Jamal Ramdani
  • Patent number: 7829429
    Abstract: One or more trenches can be formed around a first portion of a semiconductor substrate, and an insulating layer can be formed under the first portion of the semiconductor substrate. The one or more trenches and the insulating layer electrically isolate the first portion of the substrate from a second portion of the substrate. The insulating layer can be formed by forming a buried layer in the substrate, such as a silicon germanium layer in a silicon substrate. One or more first trenches through the substrate to the buried layer can be formed, and open spaces can be formed in the buried layer (such as by using an etch selective to silicon germanium over silicon). The one or more first trenches and the open spaces can optionally be filled with insulative material(s). One or more second trenches can be formed and filled to isolate the first portion of the substrate.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: November 9, 2010
    Assignee: National Semiconductor Corporation
    Inventors: Craig Printy, Andre P. Labonte, Jamal Ramdani
  • Patent number: 7781295
    Abstract: A system and method is disclosed for manufacturing a bipolar junction transistor that comprises an emitter/base layer that is formed by a single deposition process. In one advantageous embodiment of the invention the emitter/base layer comprises an emitter layer that comprises an epitaxially grown mono-silicon emitter. The epitaxially grown mono-silicon emitter significantly reduces the electrical resistivity of the emitter. A non-dopant impurity such as germanium is added to the base layer to endpoint a dry plasma etch process that is applied to etch the emitter/base layer.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: August 24, 2010
    Assignee: National Semiconductor Corporation
    Inventors: Jamal Ramdani, Craig Printy, Steven J. Adler, Andre P. Labonte