Patents by Inventor André Peter Steynberg

André Peter Steynberg has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110301253
    Abstract: Method of operating a three-phase slurry reactor includes feeding at a low level at least one gaseous reactant into a vertically extending slurry body of solid particles suspended in a suspension liquid, the slurry body being contained in at least two vertically extending shafts housed within a common reactor shell, each shaft being divided into a plurality of vertically extending channels at least some of which are in slurry flow communication and the slurry body being present in at least some of the channels. The gaseous reactant is allowed to react as it passes upwardly through the slurry body present in at least some of the channels of the shafts, thereby to form a non-gaseous and/or a gaseous product. Gaseous product, if present, and/or unreacted gaseous reactant is allowed to disengage from the slurry body in a head space above the slurry body.
    Type: Application
    Filed: August 19, 2011
    Publication date: December 8, 2011
    Inventors: André Peter Steynberg, Berthold Berend Breman, Derk Willem Frederik Brilman
  • Patent number: 8013025
    Abstract: A method of operating a three-phase slurry reactor includes feeding at a low level at least one gaseous reactant into a vertically extending slurry body of solid particles suspended in a suspension liquid, the slurry body being contained in a plurality of vertically extending horizontally spaced slurry channels inside a common reactor shell, the slurry channels being defined between vertically extending horizontally spaced divider walls or plates and each slurry channel having a height, width and breadth such that the height and breadth are much larger than the width. The gaseous reactant is allowed to react as it passes upwardly through the slurry body present in the slurry channels, thereby to form non-gaseous and/or gaseous product. Gaseous product and/or unreacted gaseous reactant is allowed to disengage from the slurry body in a head space above the slurry body.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: September 6, 2011
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Andre Peter Steynberg, Berhold Berend Breman, Derk Willem Frederick Brilman
  • Patent number: 8008359
    Abstract: Method of operating a three-phase slurry reactor includes feeding at a low level at least one gaseous reactant into a vertically extending slurry body of solid particles suspended in a suspension liquid, the slurry body being contained in at least two vertically extending shafts housed within a common reactor shell, each shaft being divided into a plurality of vertically extending channels at least some of which are in slurry flow communication and the slurry body being present in at least some of the channels. The gaseous reactant is allowed to react as it passes upwardly through the slurry body present in at least some of the channels of the shafts, thereby to form a non-gaseous and/or a gaseous product. Gaseous product, if present, and/or unreacted gaseous reactant is allowed to disengage from the slurry body in a head space above the slurry body.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: August 30, 2011
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Andre Peter Steynberg, Berthold Berend Breman, Derk Willem Frederik Brilman
  • Patent number: 7772291
    Abstract: A process for producing liquid and, optionally, gaseous products from gaseous reactants includes feeding at a low level a gaseous reactants feed comprising at least CO and H2 into an expanded slurry bed of solid non-shifting hydrocarbon synthesis catalyst particles suspended in a suspension liquid, the expanded slurry bed having an aspect ratio of less than 5. The gaseous reactants and any recycled gas are allowed to react with a per pass CO plus H2 conversion of at least 60% as they pass upwardly through the slurry bed at a gas velocity of at least 35 cm/s, thereby to form liquid and, optionally, gaseous products, and with the gaseous reactants and any recycled gas and any gaseous product assisting in maintaining the solid catalyst particles in suspension in the suspension liquid, and with the liquid product forming together with the suspension liquid, a liquid phase of the slurry bed.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: August 10, 2010
    Assignee: Sasol Technology (Proprietary) Limited
    Inventor: André Peter Steynberg
  • Publication number: 20100061905
    Abstract: A process (10) for at least partially removing hydrogen cyanide from synthesis gas includes feeding a synthesis gas (30) containing hydrogen cyanide to a gas-liquid contacting stage (18) and, in the gas-liquid contacting stage (18), contacting the synthesis gas with an aqueous washing solution (36) comprising at least one dissolved metal salt, with metal cations of the metal salt being capable of forming metal cyanide complexes and/or metal cyanide precipitates, and weak acid anions of the metal salt serving to buffer the pH of the washing solution in a range between 6 and 10. Hydrogen cyanide is washed from the synthesis gas by the washing solution to form a treated synthesis gas (38) and a spent washing solution (40). From time to time or continuously, at least a portion of the spent washing solution is withdrawn from the gas-liquid contacting stage. The treated synthesis gas (38) is also withdrawn from the gas-liquid contacting stage.
    Type: Application
    Filed: October 29, 2007
    Publication date: March 11, 2010
    Applicant: SASOL TECHNOLOGY (PROPRIETARY) LIMITED
    Inventors: Braam van Dyk, John Marroptt, Bavanethan Pillay, Hendrik Johannes van Der Westhuizen, Ronél Combrink, Trevor David Phillips, Denise Louisette Venter, André Peter Steynberg
  • Publication number: 20100018217
    Abstract: A process (10) for co-producing power and hydrocarbons includes gasifying (16, 70) coal to produce a synthesis gas (36) and a combustion gas (86) both comprising at least CO1H2 and CO2 and being at elevated pressure, separating CO2 (18, 48) from the synthesis gas, and synthesizing (20, 22) hydrocarbons from the synthesis gas. Power (114) is generated from the combustion gas, including by combusting (78) the combustion gas in the presence of oxygen and in the presence of at least a portion of the separated CO2 as moderating agent to produce a hot combusted gas (106) which includes CO2. The CO2 is recycled (112) or recovered from the combusted gas. In certain embodiments, the process (10) produces a CO2 exhaust stream (134) for sequestration or capturing for further use.
    Type: Application
    Filed: February 8, 2008
    Publication date: January 28, 2010
    Applicant: SASOL TECHNOLOGY (PROPRIETARY) LIMITED
    Inventors: Jan Hendrik Duvenhage Boshoff, Isabella Lodewina Greeff, Andre Peter Steynberg
  • Publication number: 20100022666
    Abstract: A process (10) for co-producing power and hydrocarbons includes in a wet gasification stage (70), gasifying coal to produce a combustion gas (86) at elevated pressure comprising at least H2 and CO; enriching (72) a first portion of the combustion gas with H2 to produce an H2-enriched gas (88); and generating power (77) from a second portion of the combustion gas. In a dry gasification stage (16), coal is gasified to produce a synthesis gas precursor (36) at elevated pressure comprising at least H2 and CO. At least a portion of the H2-enriched gas (88) is mixed with the synthesis gas precursor (36) to provide a synthesis gas for hydrocarbon synthesis, with hydrocarbons being synthesised (20, 22) from the synthesis gas. In certain embodiments, the process (10) produces a CO2 exhaust stream (134) for sequestration or capturing for further use.
    Type: Application
    Filed: February 8, 2008
    Publication date: January 28, 2010
    Applicant: SASOL TECHNOLOGY (PROPRIETARY) LIMITED
    Inventors: Jan Hendrik Duvenhage Boshoff, Isabella Lodewina Greeff, Andre Peter Steynberg
  • Patent number: 7612118
    Abstract: A method is provided for quenching a slurry in a slurry vessel of slurry phase apparatus which comprises a gas distributor arranged to inject a gas into the slurry at a predetermined level, and an apertured solid particles support below the level at which the gas distributor is disposed to inject the gas. The method includes introducing a quenching liquid into the slurry vessel below the apertured support and passing the quenching liquid into the slurry through the apertures of the apertured support.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: November 3, 2009
    Assignee: SASOL Technology (Proprietary) Limited
    Inventor: André Peter Steynberg
  • Publication number: 20090230024
    Abstract: A process for co-producing hydrocarbons and dimethyl ether (DME) includes feeding a gaseous feedstock comprising hydrogen and carbon monoxide, into a threephase low temperature catalytic Fischer-Tropsch reaction stage, allowing the hydrogen and carbon monoxide partially to react catalytically in the Fischer-Tropsch reaction stage to form hydrocarbons, and obtaining a tail gas from the Fischer-Tropsch reaction stage which includes unreacted hydrogen and carbon monoxide and also carbon dioxide. The composition of at least a portion of the tail gas is adjusted to provide a DME synthesis feedstock with a syngas number (SN) between 1.8 and 2.2, where formula (I) and where [H2], [CO] and [CO2] respectively are the molar proportions of hydrogen, carbon monoxide and carbon dioxide in the DME synthesis feedstock. The DME synthesis feedstock is fed into a DME synthesis stage for conversion.
    Type: Application
    Filed: February 3, 2005
    Publication date: September 17, 2009
    Inventors: Andre Peter Steynberg, Pierre Greeff
  • Patent number: 7575730
    Abstract: A method is provided for introducing or reintroducing a gas into a slurry vessel holding a slurry comprising a liquid and solid particles and having a gas distributor for injecting a gas into the slurry, where the gas distributor includes a sparger device comprising an apertured sparger portion inside the slurry vessel, an inlet portion leading into the slurry vessel and an outlet portion leading from the slurry vessel, and a valve, external of the slurry vessel, operable to allow or deny flow from the sparger portion out through the outlet portion of the sparger device. The method comprises operating the valve to allow flow through the outlet portion of the sparger device, flushing the sparger device through the outlet portion to remove settled material which may be present in the sparger device, operating the valve to deny flow through the outlet portion of the sparger device, and introducing or reintroducing the gas into the slurry vessel through the sparger device.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: August 18, 2009
    Assignee: SASOL Technology (Proprietary) Limited
    Inventor: André Peter Steynberg
  • Publication number: 20090186952
    Abstract: A process (10) for the preparation and conversion of synthesis gas includes reforming a feed gas (34) comprising methane in a reforming stage (18) to produce synthesis gas (46) which includes hydrogen and carbon monoxide. Some of the hydrogen and carbon monoxide is converted to a Fischer-Tropsch product (48) in a Fischer-Tropsch hydrocarbon synthesis stage (24). A tail gas (52), including unreacted hydrogen and carbon monoxide, methane and carbon dioxide, is separated from the Fischer-Tropsch product (48). In a tail gas treatment stage (28,30), the tail gas (52) is treated by reforming the methane in the tail gas (52) with steam (66) and removing carbon dioxide to produce a hydrogen rich gas (56). The tail gas treatment stage (28,30) may be either a combined tail gas treatment stage (28,30) or a composite tail gas treatment stage. The carbon dioxide from the tail gas treatment stage (28,30) is fed to the reforming stage (18).
    Type: Application
    Filed: June 14, 2006
    Publication date: July 23, 2009
    Inventors: Andre Peter Steynberg, Ib Dybkjaer, Kim Aasberg-Petersen
  • Publication number: 20080299022
    Abstract: An installation for producing liquid and, optionally, gaseous products from gaseous reactants. The installation has a reactor vessel having a vertically extending slurry bed zone; a first gas inlet in the vessel at a low level within the slurry bed zone for introducing gaseous reactants; a second gas inlet in the vessel at a level within the slurry bed zone which is above the first gas inlet for introducing recycled gas, the second gas inlet in the vessel being above the lower 20% of the vertical height of the slurry bed zone; a gas outlet in the vessel above the slurry bed zone, for withdrawing gas from a head space above the slurry bed zone and a liquid outlet in the vessel within the slurry bed zone, for withdrawing liquid product from the vessel.
    Type: Application
    Filed: August 15, 2008
    Publication date: December 4, 2008
    Applicant: SASOL Technology (Proprietary) Limited
    Inventors: Andre Peter Steynberg, Berthold Berend Breman
  • Publication number: 20080293834
    Abstract: A process for producing liquid and, optionally, gaseous products from gaseous reactants includes feeding at a low level a gaseous reactants feed comprising at least CO and H2 into an expanded slurry bed of solid non-shifting hydrocarbon synthesis catalyst particles suspended in a suspension liquid, the expanded slurry bed having an aspect ratio of less than 5. The gaseous reactants and any recycled gas are allowed to react with a per pass CO plus H2 conversion of at least 60% as they pass upwardly through the slurry bed at a gas velocity of at least 35 cm/s, thereby to form liquid and, optionally, gaseous products, and with the gaseous reactants and any recycled gas and any gaseous product assisting in maintaining the solid catalyst particles in suspension in the suspension liquid, and with the liquid product forming together with the suspension liquid, a liquid phase of the slurry bed.
    Type: Application
    Filed: April 28, 2005
    Publication date: November 27, 2008
    Inventor: Andre Peter Steynberg
  • Patent number: 7439274
    Abstract: A process (10) for producing liquid and, optionally, gaseous products from gaseous reactants includes feeding at a low level gaseous reactants (14) and, optionally, a portion of a recycle gas stream into a vertically extending slurry bed (70) of solid particles suspended in a suspension liquid inside a vessel (12), and feeding, as an additional gas feed (58), at least a portion of the recycle gas stream into the slurry bed (70) above the level at which the gaseous reactants (814) are fed into the slurry bed (70) and above the lower 20% of the vertical height of the slurry bed (70).
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: October 21, 2008
    Assignee: SASOL Technology (Proprietary) Limited
    Inventors: André Peter Steynberg, Berthold Berend Breman
  • Publication number: 20080146682
    Abstract: A process for producing liquid and, optionally, gaseous products from gaseous reactants includes feeding at a low level gaseous reactants into a vertically extending slurry bed of solid particles suspended in a suspension liquid, the slurry bed being located around a plurality of vertically extending jacketed conduits each comprising an inner conduit and an outer or jacket conduit defining between them a jacket space and the slurry bed also being located inside the inner conduits. The gaseous reactants are allowed to react exothermically as they pass upwardly through the slurry bed, thereby to form liquid and, optionally, gaseous products, and with the liquid product forming together with the suspension liquid, a liquid phase of the slurry bed, the reactions thus taking place outside the jacketed conduits and inside the inner conduits. A cooling medium is passed through the jacket spaces thereby to remove reaction heat from the slurry bed.
    Type: Application
    Filed: March 17, 2006
    Publication date: June 19, 2008
    Inventor: Andre Peter Steynberg
  • Publication number: 20080146683
    Abstract: Method of operating a three-phase slurry reactor includes feeding at a low level at least one gaseous reactant into a vertically extending slurry body of solid particles suspended in a suspension liquid, the slurry body being contained in at least two vertically extending shafts housed within a common reactor shell, each shaft being divided into a plurality of vertically extending channels at least some of which are in slurry flow communication and the slurry body being present in at least some of the channels. The gaseous reactant is allowed to react as it passes upwardly through the slurry body present in at least some of the channels of the shafts, thereby to form a non-gaseous and/or a gaseous product. Gaseous product, if present, and/or unreacted gaseous reactant is allowed to disengage from the slurry body in a head space above the slurry body.
    Type: Application
    Filed: March 17, 2006
    Publication date: June 19, 2008
    Inventors: Andre Peter Steynberg, Berthold Berend Breman, Derk Willem Frederik Brilman
  • Publication number: 20080114083
    Abstract: A method of operating a three-phase slurry reactor includes feeding at a low level at least one gaseous reactant into a vertically extending slurry body of solid particles suspended in a suspension liquid, the slurry body being contained in a plurality of vertically extending horizontally spaced slurry channels inside a common reactor shell, the slurry channels being defined between vertically extending horizontally spaced divider walls or plates and each slurry channel having a height, width and breadth such that the height and breadth are much larger than the width. The gaseous reactant is allowed to react as it passes upwardly through the slurry body present in the slurry channels, thereby to form non-gaseous and/or gaseous product. Gaseous product and/or unreacted gaseous reactant is allowed to disengage from the slurry body in a head space above the slurry body.
    Type: Application
    Filed: March 17, 2006
    Publication date: May 15, 2008
    Inventors: Andre Peter Steynberg, Berthold Berend Breman, Derk Willem Frederick Brilman
  • Publication number: 20080035889
    Abstract: A method of supplying steam and a hydrogen feedstock to a primary process for producing synthesis gas includes, in a reformer of a secondary process which comprises a plurality of catalyst containing reforming passages, combusting a fuel to heat all of the reforming passages, whilst producing a hot synthesis gas by reforming a hydrocarbonaceous gas in the presence of process steam in some of the catalyst containing reforming passages only. The hot synthesis gas is cooled to produce steam which is supplied to the primary process. The cooled synthesis gas is treated to produce a hydrogen feedstock which is supplied to the primary process. The reforming passages not producing hot synthesis gas are cooled by passing a cooling medium through them and the hot synthesis gas exiting some of the reforming passages is separated from the cooling medium exiting other reforming passages.
    Type: Application
    Filed: February 14, 2005
    Publication date: February 14, 2008
    Inventor: Andre Peter Steynberg
  • Publication number: 20080027150
    Abstract: A process for synthesising hydrocarbons includes feeding a gaseous feedstock comprising hydrogen, carbon monoxide and carbon dioxide, into a dimethyl ether (DME) synthesis stage, and in the DME synthesis stage, converting a portion of the gaseous feedstock into a DME product and gaseous products. The DME product is separated from unreacted gaseous reactants and the gaseous products to obtain a tail gas comprising hydrogen and carbon monoxide. The tail gas is fed into a Fischer-Tropsch hydrocarbon synthesis stage, and the hydrogen, carbon monoxide and carbon dioxide are allowed at least partially to react catalytically in the Fischer-Tropsch hydrocarbon synthesis stage to form hydrocarbons.
    Type: Application
    Filed: February 3, 2005
    Publication date: January 31, 2008
    Inventor: Andre Peter Steynberg
  • Patent number: 6974844
    Abstract: A process for starting up a Fischer-Tropsch reactor includes establishing, in the reactor, an initial charge of molten wax. The initial reactor temperature is below the line-out reactor temperature but is sufficiently high for a Fischer-Tropsch reaction to take place. The reactor contains, in contact with the molten wax, at least a portion of its line-out catalyst inventory. Syngas is fed into the reactor at an initial flow rate below the line-out syngas flow rate. Initially a syngas H2:CO molar ratio is maintained at a higher value than its line-out value, whereafter the syngas H2:CO molar ratio is decreased to its line-out value. The syngas flow rate and the reactor temperature are then increased to their line-out values.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: December 13, 2005
    Assignee: Sasol Technology (Proprietary) Limited
    Inventor: André Peter Steynberg