Patents by Inventor Andre C. HALL

Andre C. HALL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10936498
    Abstract: When a shingled magnetic recording (SMR) hard disk drive (HDD) receives a write command that references one or more target logical block addresses (LBAs) and determines that one or more target LBAs are included in a range of LBAs for which data are stored in a memory of the drive, additional data are written to the media cache of the SMR HDD along with the write data during the same disk access. The additional data include data that are stored in the volatile memory and are associated with one or more LBAs that are adjacent in LBA space to the target LBAs. The one or more LBAs that are adjacent in LBA space to the target LBAs may include a first group of LBAs that is adjacent to and follows the target LBAs and a second group of LBA that is adjacent to and precedes the target LBAs.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: March 2, 2021
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventors: Richard M. Ehrlich, Andre C. Hall
  • Publication number: 20200251142
    Abstract: A shingled magnetic recording (SMR) hard disk drive (HDD) receives a read command for data associated with a range of logical block addresses (LBAs). In situations where a first portion of valid data associated with the range of LBAs is stored in an SMR region of the HDD and a second portion of valid data associated with the range of LBAs is stored in a non-SMR region of the HDD, the first portion is read from the SMR region in a single disk access and copied to a first buffer of the HDD, and the second portion is read from the non-SMR region in one or more disk accesses and copied to a second buffer of the HDD. The valid data associated with the range of LBAs stored in the second buffer are copied to the first buffer to be combined with valid data associated with the range of LBAs stored in the first buffer, and the combined valid data is then transferred to the host to complete execution of the read command.
    Type: Application
    Filed: January 6, 2020
    Publication date: August 6, 2020
    Inventor: Andre C. HALL
  • Patent number: 10529374
    Abstract: A shingled magnetic recording (SMR) hard disk drive (HDD) receives a read command for data associated with a range of logical block addresses (LBAs). In situations where a first portion of valid data associated with the range of LBAs is stored in an SMR region of the HDD and a second portion of valid data associated with the range of LBAs is stored in a non-SMR region of the HDD, the first portion is read from the SMR region in a single disk access and copied to a first buffer of the HDD, and the second portion is read from the non-SMR region in one or more disk accesses and copied to a second buffer of the HDD. The valid data associated with the range of LBAs stored in the second buffer are copied to the first buffer to be combined with valid data associated with the range of LBAs stored in the first buffer, and the combined valid data is then transferred to the host to complete execution of the read command.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: January 7, 2020
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventor: Andre C. Hall
  • Publication number: 20190278710
    Abstract: When a shingled magnetic recording (SMR) hard disk drive (HDD) receives a write command that references one or more target logical block addresses (LBAs) and determines that one or more target LBAs are included in a range of LBAs for which data are stored in a memory of the drive, additional data are written to the media cache of the SMR HDD along with the write data during the same disk access. The additional data include data that are stored in the volatile memory and are associated with one or more LBAs that are adjacent in LBA space to the target LBAs. The one or more LBAs that are adjacent in LBA space to the target LBAs may include a first group of LBAs that is adjacent to and follows the target LBAs and a second group of LBA that is adjacent to and precedes the target LBAs.
    Type: Application
    Filed: March 12, 2018
    Publication date: September 12, 2019
    Inventors: Richard M. EHRLICH, Andre C. HALL
  • Publication number: 20180260159
    Abstract: A shingled magnetic recording (SMR) hard disk drive (HDD) receives a read command for data associated with a range of logical block addresses (LBAs). In situations where a first portion of valid data associated with the range of LBAs is stored in an SMR region of the HDD and a second portion of valid data associated with the range of LBAs is stored in a non-SMR region of the HDD, the first portion is read from the SMR region in a single disk access and copied to a first buffer of the HDD, and the second portion is read from the non-SMR region in one or more disk accesses and copied to a second buffer of the HDD. The valid data associated with the range of LBAs stored in the second buffer are copied to the first buffer to be combined with valid data associated with the range of LBAs stored in the first buffer, and the combined valid data is then transferred to the host to complete execution of the read command.
    Type: Application
    Filed: March 7, 2017
    Publication date: September 13, 2018
    Inventor: Andre C. HALL
  • Patent number: 9965181
    Abstract: Data is stored in a hybrid HDD that includes a magnetic storage medium and a nonvolatile solid-state device according to multiple modes of operation: a full caching mode, a transitional caching mode, and an HDD only mode. The mode of operation may be selected based on the current condition or performance of individual storage regions in a nonvolatile solid-state device of the hybrid HDD, or on the current condition or performance of the nonvolatile solid-state device as a whole. As the nonvolatile solid-state device undergoes wear, performance of the hybrid HDD is maintained by using less reliable memory blocks in the nonvolatile solid-state device as a read cache, even when these memory blocks are considered too unreliable to store dirty data.
    Type: Grant
    Filed: April 8, 2015
    Date of Patent: May 8, 2018
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mine Wonkyung Budiman, Andre C. Hall, Eric R. Dunn, Thorsten Schmidt
  • Publication number: 20160299850
    Abstract: Data is stored in a hybrid HDD that includes a magnetic storage medium and a nonvolatile solid-state device according to multiple modes of operation: a full caching mode, a transitional caching mode, and an HDD only mode. The mode of operation may be selected based on the current condition or performance of individual storage regions in a nonvolatile solid-state device of the hybrid HDD, or on the current condition or performance of the nonvolatile solid-state device as a whole. As the nonvolatile solid-state device undergoes wear, performance of the hybrid HDD is maintained by using less reliable memory blocks in the nonvolatile solid-state device as a read cache, even when these memory blocks are considered too unreliable to store dirty data.
    Type: Application
    Filed: April 8, 2015
    Publication date: October 13, 2016
    Inventors: Mine Wonkyung BUDIMAN, Andre C. HALL, Eric R. DUNN, Thorsten SCHMIDT