Patents by Inventor Andre Delage

Andre Delage has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100290037
    Abstract: Methods and devices related to a sensor element for use in the detection and monitoring of molecular interactions. The sensor element uses a silicon-on-insulator wafer optically coupled to a silicon prism. The wafer has a thin silicon film top layer, a silicon substrate layer, and a buried silicon dioxide layer sandwiched between the silicon film and substrate layers. The wafer is coupled to the prism on the wafer's substrate side while the interactions to be monitored are placed on the wafer's silicon film side. An incident beam is directed at the prism and the incident angle is adjusted until the beam optically couples to the silicon film's optical waveguide mode. When this occurs, a decrease in the intensity of the reflected beam can be detected. The molecular interactions affect the phase velocity or wave vector of the propagating mode. Similarly, instead of measuring the incident angle at which optical coupling occurs, the phase of the reflected beam may be measured.
    Type: Application
    Filed: August 15, 2007
    Publication date: November 18, 2010
    Applicant: NATIONAL RESEARCH COUNCIL OF CANADA
    Inventors: Dan-xia Xu, Adam Densmore, Andre Delage, Pavel Cheben, Siegfried Janz
  • Patent number: 7778499
    Abstract: Methods and devices relating to a sensor for use in detecting and monitoring molecular interactions. A silicon waveguide sensing element is provided along with a layer of silicon. A silicon oxide layer is also provided between the waveguide element and the layer of silicon. The sensing element is adjacent to an aqueous solution in which the molecular interactions are occurring. A light beam travelling in the silicon waveguide creates an evanescent optical field on the surface of the sensing element adjacent to the boundary between the sensing element and the aqueous medium. Molecular interactions occurring on this surface affect the intensity or the phase of the light beam travelling through the waveguide by changing the effective refractive index of the medium. By measuring the effect on the intensity, phase, or speed of the light beam, the molecular interactions can be detected and monitored in real time.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: August 17, 2010
    Assignee: National Research Council of Canada
    Inventors: Siegfried Janz, Pavel Cheben, Andre Delage, Adam Densmore, Dan-Xia Xu
  • Publication number: 20100165351
    Abstract: Methods and devices relating to sensors and sensor blocks for use in detecting and monitoring molecular interactions. A silicon waveguide sensing element is provided along with a layer of silicon. A silicon oxide layer is also provided between the waveguide element and the layer of silicon. The sensing element is adjacent to an aqueous solution in which the molecular interactions are occurring. A light beam travelling in the silicon waveguide creates an evanescent optical field on the surface of the sensing element adjacent to the boundary between the sensing element and the aqueous medium. Molecular interactions occurring on this surface affect the intensity or the phase of the light beam travelling through the waveguide by changing the effective refractive index of the medium. By measuring the effect on the intensity, phase, or speed of the light beam, the molecular interactions can be detected and monitored in real time. Various configurations using this sensor technology is also disclosed.
    Type: Application
    Filed: April 9, 2008
    Publication date: July 1, 2010
    Inventors: Dan-Xia Xu, Adam Densmore, Andre Delage, Pavel Cheben, Siegfried Janz
  • Publication number: 20080292236
    Abstract: Methods and devices relating to a sensor for use in detecting and monitoring molecular interactions. A silicon waveguide sensing element is provided along with a layer of silicon. A silicon oxide layer is also provided between the waveguide element and the layer of silicon. The sensing element is adjacent to an aqueous solution in which the molecular interactions are occurring. A light beam travelling in the silicon waveguide creates an evanescent optical field on the surface of the sensing element adjacent to the boundary between the sensing element and the aqueous medium. Molecular interactions occurring on this surface affect the intensity or the phase of the light beam travelling through the waveguide by changing the effective refractive index of the medium. By measuring the effect on the intensity, phase, or speed of the light beam, the molecular interactions can be detected and monitored in real time.
    Type: Application
    Filed: September 13, 2007
    Publication date: November 27, 2008
    Inventors: Siegfried Janz, Pavel Cheben, Andre Delage, Adam Densmore
  • Patent number: 7376305
    Abstract: An Echelle grating has alternate first (1a) and second (1b) sets of facets (1). The first set of facets (1a) is operative to reflect incident light (4) for diffraction and the second set of facets (1b) extends between adjacent facets of the first set (1a). Only the first set of facets (1a) is metallized to enhance reflection. The second set of facets (1b) is left unmetallized. This configuration reduces polarization dependent loss (PDL).
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: May 20, 2008
    Assignee: Enablence Inc.
    Inventors: Andre Delage, Boris Lamontagne, Kokou Dossou, Siegfried Janz, Pavel Cheben, Lynden Erickson, Dan-Xia Xu, Sylvain Charbonneau
  • Patent number: 7272276
    Abstract: An optical performance monitor for measuring the performance of optical networks has an echelle grating for demultiplexing an input beam into a plurality of wavelengths that are focused onto an array of divided output waveguides. Each divided output waveguide is positioned to receive a corresponding demultiplexed wavelength from the echelle grating or other waveguide multiplexer device. The divided output waveguides laterally separate the corresponding demultiplexed wavelength into a first and second portions. A detector array is positioned to receive the respective portions of the demultiplexed wavelengths and by comparing their relative intensity it is possible to detect any drift in the nominal wavelengths of the channels.
    Type: Grant
    Filed: November 8, 2001
    Date of Patent: September 18, 2007
    Assignee: Enablence Inc.
    Inventors: Matt Pearson, Lynden Erickson, John Miller, Siegfried Janz, Dan-Xia Xu, Pavel Cheben, Andre Delage, Boris Lamontagne, Sylvain Charbonneau
  • Publication number: 20060209411
    Abstract: An Echelle grating has alternate first (1a) and second (1b) sets of facets (1). The first set of facets (1a) is operative to reflect incident light (4) for diffraction and the second set of facets (1b) extends between adjacent facets of the first set (1a). Only the first set of facets (1a) is metallized to enhance reflection. The second set of facets (1b) is left unmetallized. This configuration reduces polarization dependent loss (PDL).
    Type: Application
    Filed: November 26, 2002
    Publication date: September 21, 2006
    Inventors: Andre Delage, Boris Lamontagne, Kokou Dossou, Siegfried Janz, Pavel Cheben, Lynden Erickson, Dan-Xia Xu, Sylvain Charbonneau
  • Publication number: 20040240063
    Abstract: A method is desribed for controlling the pass band of an optical device wherein a phase mask is introduced to modify the shaped of an image produced by the photonic device.
    Type: Application
    Filed: November 28, 2003
    Publication date: December 2, 2004
    Inventors: Andre Delage, Muthukumaran Packirisamy, Siegfried Janz, Lynden Erickson, Dan-Xia Xu, Pavel Cheben, Boris Lamontage, Sylvain Charbonneau
  • Publication number: 20040151459
    Abstract: The method consists of creating a compensating region within the slab waveguide region, with effective TE and TM mode refractive indices of the compensating region higher than those of the original slab waveguide. Such change in refractive indices is achieved by deposition of an over-layer on the compensating region.
    Type: Application
    Filed: November 28, 2003
    Publication date: August 5, 2004
    Inventors: Pavel Cheben, Siegfried Janz, Dan-Xia Xu, Andre Delage, Lynden Erickson, Boris Lamontage, Sylvain Charbonneau
  • Publication number: 20040151429
    Abstract: Disclosed is an optical double pass equalizer for equalizing a wavelength division multiplexed (WDM) signal. The equalizer comprises a multiplexer/demultiplexer and multiple variable optical attenuators (VOAs) integrated on a single monolithic chip. The WDM signal is demultiplexed into individual wavelength channels by the multiplexer/demultiplexer and each wavelength channel is equalized by a corresponding VOA. The equalized wavelength channels are then multiplexed into an equalized WDM signal by the multiplexer/demultiplexer. This provides several advantages, including a reduction in required assembly and assembly cost, as well as an improved dynamic range in attenuation level or alternatively a reduction in power consumption for a fix attenuation level compared to a single pass VOA unit.
    Type: Application
    Filed: November 28, 2003
    Publication date: August 5, 2004
    Inventors: Siegfried Janz, Dan-Xia Xu, Pavel Cheben, Andre Delage, Lynden Erickson, Boris Lamontagne, Sylvain Charbonneau
  • Patent number: 6766077
    Abstract: A planar waveguide grating device has a slab waveguide defining an input channel and a plurality of output channels. An echelle grating has a multitude of facets, each of the facets being blazed with respect to a preselected output channel. Each facet has an elliptical curvature so as to be astigmatic with respect to the input channel and the preselected output channel. The echelle grating is preferably based on a Rowland circle design. The astigmatic design of the facets reduces aberrations at high orders.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: July 20, 2004
    Assignee: LNL Technologies, Inc.
    Inventors: Muthukumaran Packirisamy, Andre Delage
  • Patent number: 6701034
    Abstract: In a digital optical switch, an input waveguide and two output waveguides form a Y-shaped splitter or switch. Electrodes are positioned on each output waveguide at the junction with the input waveguide. The electrodes extend as narrow strips across the waveguides. The inner edges of the electrodes are curved to form a smooth continuation profile to the signal paths to reduce losses.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: March 2, 2004
    Assignee: National Research Council of Canada
    Inventors: Jian-Jun He, André Delage
  • Publication number: 20030091282
    Abstract: A planar waveguide grating device has a slab waveguide defining an input channel and a plurality of output channels. An echelle grating has a multitude of facets, each of the facets being blazed with respect to a preselected output channel. Each facet has an elliptical curvature so as to be astigmatic with respect to the input channel and the preselected output channel. The echelle grating is preferably based on a Rowland circle design. The astigmatic design of the facets reduces aberrations at high orders.
    Type: Application
    Filed: November 13, 2001
    Publication date: May 15, 2003
    Inventors: Muthukumaran Packirisamy, Andre Delage
  • Publication number: 20030068113
    Abstract: A method is disclosed for polarization birefringence compensation in a photonic device with a slab waveguide having a core. A compensator region is formed in the slab waveguide to minimize the wavelength shift between light of different polarizations. A thin capping layer, typically of silicon nitride, having a higher refractive index than the core, is formed on the compensator region to increase the birefringence contrast between the compensator region and the planar waveguide.
    Type: Application
    Filed: January 25, 2002
    Publication date: April 10, 2003
    Inventors: Siegfried Janz, Dan-Xia Xu, Pavel Cheben, Andre Delage, Lynden Erickson, Boris Lamontagne, Sylvain Charbonneau
  • Publication number: 20030063849
    Abstract: A method is disclosed for polarization birefringence compensation in a photonic device with a slab waveguide having a core. A compensator region is formed in the slab waveguide to minimize the wavelength shift between light of different polarizations. A thin capping layer, typically of silicon nitride, having a higher refractive index than the core is formed on the compensator region to increase the birefringence contrast between the compensator region and the planar waveguide.
    Type: Application
    Filed: November 8, 2001
    Publication date: April 3, 2003
    Inventors: Siegfried Janz, Dan-Xia Xu, Pavel Cheben, Andre Delage, Lynden Erickson, Boris Lamontagne, Sylvain Charbonneau
  • Publication number: 20030048498
    Abstract: An optical performance monitor for measuring the performance of optical networks has an echelle grating for demultiplexing an input beam into a plurality of wavelengths that are focused onto an array of divided output waveguides. Each divided output waveguide is positioned to receive a corresponding demultiplexed wavelength from the echelle grating or other waveguide multiplexer device. The divided output waveguides laterally separate the corresponding demultiplexed wavelength into a first and second portions. A detector array is positioned to receive the respective portions of the demultiplexed wavelengths and by comparing their relative intensity it is possible to detect any drift in the nominal wavelengths of the channels.
    Type: Application
    Filed: November 8, 2001
    Publication date: March 13, 2003
    Inventors: Matt Pearson, Lynden Erickson, John Miller, Siegfried Janz, Dan-Xia Xu, Pavel Cheben, Andre Delage, Boris Lamontagne, Sylvain Charbonneau
  • Patent number: 6526193
    Abstract: In a digital optical switch, an input waveguide and two output waveguides form a Y-shaped splitter or switch. Electrodes are positioned on each output waveguide at the junction with the input waveguide. The electrodes extend as narrow strips across the waveguides. The inner edges of the electrodes are curved to form a smooth continuation profile to the signal paths to reduce losses.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: February 25, 2003
    Assignee: National Research Council of Canada
    Inventors: Jian-Jun He, André Delage
  • Publication number: 20020061155
    Abstract: In a digital optical switch, an input waveguide and two output waveguides form a Y-shaped splitter or switch. Electrodes are positioned on each output waveguide at the junction with the input waveguide. The electrodes extend as narrow strips across the waveguides. The inner edges of the electrodes are curved to form a smooth continuation profile to the signal paths to reduce losses.
    Type: Application
    Filed: October 19, 2001
    Publication date: May 23, 2002
    Inventors: Jian-Jun He, Andre Delage
  • Patent number: 6339662
    Abstract: A planar waveguide optical device whose wavelengths are stabilized by temperature, has an input channel, a series of output data channels, and a dispersive element, such as a diffraction grating or phase array, for directing component wavelengths of incoming light into the respective output data channels. A pair of monitor channels have a separation less than, and a width greater than, the data channels. A differential feedback arrangement controls the temperature of the demultiplexer according a differential signal received from the pair of monitor channels.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: January 15, 2002
    Assignee: National Research Council of Canada
    Inventors: Emil S. Koteles, Jian-Jun He, Lynden E Erickson, Boris Lamontagne, André Delâge
  • Patent number: 5514445
    Abstract: A method of manufacturing a honeycomb structure of thermostructural composite material comprising a fiber reinforcing fabric densified by a matrix, the fibers of the reinforcing fabric being of a material selected from carbon and ceramics, as is the matrix, the method comprising the following steps:making a three-dimensional fiber fabric by means of superposed two-dimensional plies that are bonded together by means of fibers passing through the plies;making slit-shaped cuts in a staggered configuration through the plies, and through the entire thickness of the fabric;stretching the cut fabric in a direction that is not parallel to the cuts but that is parallel to the plies so as to form cells whose walls are constituted by the lips of the cuts; andwhile the cut texture is held in the stretched state, densifying it using the matrix-constituting material to obtain a rigid honeycomb structure of thermostructural material.
    Type: Grant
    Filed: January 26, 1995
    Date of Patent: May 7, 1996
    Assignee: Societe Europeenne de Propulsion
    Inventors: Andre Delage, Jean-Michel Georges, Jean-Pierre Maumus