Patents by Inventor Andre Kleinwechter

Andre Kleinwechter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12205815
    Abstract: A gallium arsenide substrate which exhibits at least one surface having a surface oxide layer comprising gallium and arsenic oxides and which exhibits at least one surface having, according to an ellipsometric lateral substrate mapping with an optical surface analyzer, based on a substrate diameter of 150 mm as reference, a defect number of <6000 and/or a total defect area of less than 2 cm2, wherein a defect is defined as a continuous area of greater than 1000 ?m2 having a deviation from the average measurement signal in elipsometric lateral substrate mapping with an optical surface analyzer of at least ±0.05%.
    Type: Grant
    Filed: October 10, 2021
    Date of Patent: January 21, 2025
    Assignee: FREIBERGER COMPOUND MATERIALS GMBH
    Inventors: Wolfram Fliegel, Christoph Klement, Christa Willnauer, Max Scheffer-Czygan, André Kleinwechter, Stefan Eichler, Berndt Weinert, Michael Mäder
  • Publication number: 20220028682
    Abstract: A gallium arsenide substrate which exhibits at least one surface having a surface oxide layer comprising gallium and arsenic oxides and which exhibits at least one surface having, according to an ellipsometric lateral substrate mapping with an optical surface analyzer, based on a substrate diameter of 150 mm as reference, a defect number of <6000 and/or a total defect area of less than 2 cm2, wherein a defect is defined as a continuous area of greater than 1000 ?m2 having a deviation from the average measurement signal in elipsometric lateral substrate mapping with an optical surface analyzer of at least ±0.05%.
    Type: Application
    Filed: October 10, 2021
    Publication date: January 27, 2022
    Inventors: Wolfram FLIEGEL, Christoph KLEMENT, Christa WILLNAUER, Max SCHEFFER-CZYGAN, André KLEINWECHTER, Stefan EICHLER, Berndt WEINERT, Michael MÄDER
  • Patent number: 11170989
    Abstract: The present invention relates to a novel provided gallium arsenide substrates as well as the use thereof. The gallium arsenide substrates provided according to the invention exhibit a so far not obtained surface quality, in particular a homogeneity of surface properties, which is detectable by means of optical surface analyzers, by way of example by means of ellipsometric lateral substrate mapping for optical contact-free quantitative characterization.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: November 9, 2021
    Assignee: FREIBERGER COMPOUND MATERIALS GMBH
    Inventors: Wolfram Fliegel, Christoph Klement, Christa Willnauer, Max Scheffer-Czygan, André Kleinwechter, Stefan Eichler, Berndt Weinert, Michael Mäder
  • Patent number: 10460924
    Abstract: The present invention relates to a novel process for producing a surface-treated gallium arsenide substrate as well as novel provided gallium arsenide substrates as such as well as the use thereof. The improvement of the process according to the invention is based on a particular final surface treatment with an oxidation treatment of at least one surface of the gallium arsenide substrate in dry condition by means of UV radiation and/or ozone gas, a contacting of the at least one surface of the gallium arsenide substrate with at least one liquid medium and a Marangoni drying of the gallium arsenide substrate. The gallium arsenide substrates provided according to the invention exhibit a so far not obtained surface quality, in particular a homogeneity of surface properties, which is detectable by means of optical surface analyzers, specifically by means of ellipsometric lateral substrate mapping for the optical contact-free quantitative characterization.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: October 29, 2019
    Assignee: FREIBERGER COMPOUND MATERIALS GMBH
    Inventors: Wolfram Fliegel, Christoph Klement, Christa Willnauer, Max Scheffer-Czygan, André Kleinwechter, Stefan Eichler, Berndt Weinert, Michael Mäder
  • Publication number: 20180158673
    Abstract: The present invention relates to a novel provided gallium arsenide substrates as well as the use thereof. The gallium arsenide substrates provided according to the invention exhibit a so far not obtained surface quality, in particular a homogeneity of surface properties, which is detectable by means of optical surface analyzers, by way of example by means of ellipsometric lateral substrate mapping for optical contact-free quantitative characterization.
    Type: Application
    Filed: February 1, 2018
    Publication date: June 7, 2018
    Inventors: Wolfram FLIEGEL, Christoph KLEMENT, Christa WILLNAUER, Max SCHEFFER-CZYGAN, André KLEINWECHTER, Stefan EICHLER, Berndt WEINERT, Michael MÄDER
  • Publication number: 20150371844
    Abstract: The present invention relates to a novel process for producing a surface-treated gallium arsenide substrate as well as novel provided gallium arsenide substrates as such as well as the use thereof. The improvement of the process according to the invention is based on a particular final surface treatment with an oxidation treatment of at least one surface of the gallium arsenide substrate in dry condition by means of UV radiation and/or ozone gas, a contacting of the at least one surface of the gallium arsenide substrate with at least one liquid medium and a Marangoni drying of the gallium arsenide substrate. The gallium arsenide substrates provided according to the invention exhibit a so far not obtained surface quality, in particular a homogeneity of surface properties, which is detectable by means of optical surface analyzers, specifically by means of ellipsometric lateral substrate mapping for the optical contact-free quantitative characterization.
    Type: Application
    Filed: February 12, 2014
    Publication date: December 24, 2015
    Inventors: Wolfram FLIEGEL, Christoph KLEMENT, Christa WILLNAUER, Max SCHEFFER-CZYGAN, André KLEINWECHTER, Stefan EICHLER, Berndt WEINERT, Michael MÄDER
  • Patent number: 7195542
    Abstract: A wire saw (1; 100) for cutting a workpiece includes a device (21, 22, 24, 27) for setting, controlling and/or maintaining a predetermined or desired water content in at least part of the gaseous medium that contacts the slurry. With the wire saw according to the invention and the process carried out using this wire saw, it is possible to achieve consistently good surface properties of the resulting wafers over a prolonged period of use of a slurry.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: March 27, 2007
    Assignee: Freiberger Compound Materials GmbH
    Inventors: Ralf Hammer, André Kleinwechter, Sylvia Müller, Ralf Gruszynsky
  • Publication number: 20070049173
    Abstract: A wire saw (1; 100) for cutting a workpiece includes a device (21, 22, 24, 27) for setting, controlling and/or maintaining a predetermined or desired water content in at least part of the gaseous medium that contacts the slurry. With the wire saw according to the invention and the process carried out using this wire saw, it is possible to achieve consistently good surface properties of the resulting wafers over a prolonged period of use of a slurry.
    Type: Application
    Filed: July 12, 2006
    Publication date: March 1, 2007
    Inventors: Ralf Hammer, Andre Kleinwechter, Sylvia Muller, Ralf Gruszynsky
  • Patent number: 7137865
    Abstract: A method for the division of single crystals, in particular of GaAs, is provided in which a single crystal (1) to be cut into at least two parts and a cutting tool (2, 3; 8, 8a, 8b, 8c) are moved relative to one another in a direction of advancement (V) and wherein the single crystal (1) is oriented in such a way that a specified crystallographic orientation (K) lies in the cutting plane (T), characterized in that an angle (?) between the specified crystallographic direction (K) and the direction of advancement (V) is chosen in such a way that forces which act on the cutting tool during cutting in a direction at right angles to the cutting plane compensate one another.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: November 21, 2006
    Assignee: Freiberger Compound Materials GmbH
    Inventors: Ralf Hammer, André Kleinwechter, Tilo Flade, Cornelia Kumann, Ralf Gruszynsky
  • Patent number: 6923171
    Abstract: An apparatus and a method for determining the orientation of a crystallographic plane (100) relative to a crystal surface (2) are provided, in which the orientation is free from errors of adhesion of the crystal or contamination of the holders for the crystal. For this purpose, the angle which the crystal surface to be measured forms with a reference axis and the angle which the crystallographic plane forms with the reference axis are measured and subtracted. In a wire sawing apparatus with an X-Y positioning unit, next the desired correction is made with the aid of measurement of the orientation and at the same time the crystal is displaced in horizontal and vertical positions. As a result, there remains a further degree of freedom of rotation of the crystal in the cutting plane for achieving a cut which is free from forces perpendicular to the feed direction and wire direction, so that no tool deflection takes place or the cutting forces are minimal. Further, the precision of orientation is increased.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: August 2, 2005
    Assignee: Freiberger Compound Materials GmbH
    Inventors: Ralf Hammer, Ralf Gruszynsky, André Kleinwechter, Tilo Flade
  • Publication number: 20040168682
    Abstract: An apparatus and a method for determining the orientation of a crystallographic plane (100) relative to a crystal surface (2) are provided, in which the orientation is free from errors of adhesion of the crystal or contamination of the holders for the crystal. For this purpose, the angle which the crystal surface to be measured forms with a reference axis and the angle which the crystallographic plane forms with the reference axis are measured and subtracted. In a wire sawing apparatus with an X-Y positioning unit, next the desired correction is made with the aid of measurement of the orientation and at the same time the crystal is displaced in horizontal and vertical positions. As a result, there remains a further degree of freedom of rotation of the crystal in the cutting plane for achieving a cut which is free from forces perpendicular to the feed direction and wire direction, so that no tool deflection takes place or the cutting forces are minimal. Further, the precision of orientation is increased.
    Type: Application
    Filed: December 11, 2003
    Publication date: September 2, 2004
    Inventors: Ralph Hammer, Ralf Gruszynsky, Andre Kleinwechter, Tilo Flade
  • Publication number: 20040118338
    Abstract: A method for the division of single crystals, in particular of GaAs, is provided in which a single crystal (1) to be cut into at least two parts and a cutting tool (2, 3; 8, 8a, 8b, 8c) are moved relative to one another in a direction of advancement (V) and wherein the single crystal (1) is oriented in such a way that a specified crystallographic orientation (K) lies in the cutting plane (T), characterised in that an angle (&rgr;) between the specified crystallographic direction (K) and the direction of advancement (V) is chosen in such a way that forces which act on the cutting tool during cutting in a direction at right angles to the cutting plane compensate one another.
    Type: Application
    Filed: April 18, 2003
    Publication date: June 24, 2004
    Inventors: Ralf Hammer, Andre Kleinwechter, Tilo Flade, Cornelia Kumann, Ralf Gruszynsky
  • Publication number: 20030005919
    Abstract: A method and a device for the division of materials, in particular of single crystals, in particular by inner hole cutting is provided, with a cutting disk (2) having a concentric hole whose edge (3) forms a cutting edge and wherein the cutting disk (2) is rotatable about its central axis in order to cut the single crystal (1), a positioning device for positioning the single crystal (1) to be cut relative to the cutting disk in such a way that the cutting disk moves in rotating manner through the single crystal in order to separate off a part (1a) of the single crystal (1), and a device for the supply of coolant-lubricant onto the cutting disk (2), wherein the device (10) for the supply of coolant-lubricant is arranged in such a way that viewed in the direction of rotation it supplies the coolant-lubricant on the exit side behind the passage of the cutting disk (2) through the single crystal (1), and a device for the supply of compressed air (12).
    Type: Application
    Filed: July 8, 2002
    Publication date: January 9, 2003
    Inventors: Ralf Hammer, Ralf Gruszynsky, Andre Kleinwechter, Tilo Flade